stuff circuits blah
This commit is contained in:
@@ -104,5 +104,89 @@ $$
|
||||
|
||||
Just as the potential energy of a raised ball does not depend on the gravitational field of the ball, the electric potential of the test charge $q$ doesn't depend on the magnitude of the charge itself. This quantity is given the unit **Volt**, or $1\text{ V}=1\;\text{J}/\mathrm{C}$
|
||||
|
||||
# Circuits
|
||||
### Ohm’s Law:
|
||||
$$
|
||||
V = IR
|
||||
$$
|
||||
- Voltage $V$ = Current $I$ × Resistance $R$
|
||||
|
||||
### Power in Circuits:
|
||||
$$
|
||||
P = IV
|
||||
$$
|
||||
- Power $P$ = Current $I$ × Voltage $V$
|
||||
|
||||
$$
|
||||
P = I^2R
|
||||
$$
|
||||
- Power $P$ = Current squared $I^2$ × Resistance $R$
|
||||
|
||||
$$
|
||||
P = \frac{V^2}{R}
|
||||
$$
|
||||
- Power $P$ = Voltage squared $V^2$ / Resistance $R$
|
||||
|
||||
### Series Circuits:
|
||||
$$
|
||||
R_{\text{total}} = R_1 + R_2 + \dots + R_n
|
||||
$$
|
||||
- Total Resistance $R_{\text{total}}$ = Sum of Individual Resistances
|
||||
|
||||
$$
|
||||
V_{\text{total}} = V_1 + V_2 + \dots + V_n
|
||||
$$
|
||||
- Total Voltage $V_{\text{total}}$ = Sum of Individual Voltages
|
||||
|
||||
$$
|
||||
I_{\text{total}} = I_1 = I_2 = \dots = I_n
|
||||
$$
|
||||
- Current $I_{\text{total}}$ is the same across all components
|
||||
|
||||
### Parallel Circuits:
|
||||
$$
|
||||
\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}
|
||||
$$
|
||||
- Total Resistance $R_{\text{total}}$ = Reciprocal Sum of Individual Resistances
|
||||
|
||||
$$
|
||||
V_{\text{total}} = V_1 = V_2 = \dots = V_n
|
||||
$$
|
||||
- Voltage $V_{\text{total}}$ is the same across all components
|
||||
|
||||
$$
|
||||
I_{\text{total}} = I_1 + I_2 + \dots + I_n
|
||||
$$
|
||||
- Total Current $I_{\text{total}}$ is the sum of individual currents
|
||||
|
||||
### Capacitance:
|
||||
$$
|
||||
Q = CV
|
||||
$$
|
||||
- Charge $Q$ = Capacitance $C$ × Voltage $V$
|
||||
|
||||
$$
|
||||
C = \frac{\epsilon_0 A}{d}
|
||||
$$
|
||||
- Capacitance $C$ of a parallel plate capacitor: $\epsilon_0$ = permittivity of free space, $A$ = area of plates, $d$ = distance between plates
|
||||
|
||||
### Inductance:
|
||||
$$
|
||||
V = L \frac{di}{dt}
|
||||
$$
|
||||
- Voltage across an inductor $V$ = Inductance $L$ × Rate of change of current $\frac{di}{dt}$
|
||||
|
||||
### RL Time Constant:
|
||||
$$
|
||||
\tau = \frac{L}{R}
|
||||
$$
|
||||
- Time constant $\tau$ for an RL circuit
|
||||
|
||||
### Kirchhoff’s Laws:
|
||||
- **Kirchhoff’s Current Law (KCL):** The sum of currents entering a junction equals the sum of currents leaving.
|
||||
- **Kirchhoff’s Voltage Law (KVL):** The sum of voltages around any closed loop equals zero.
|
||||
|
||||
|
||||
|
||||
---
|
||||
#physics
|
||||
|
||||
Reference in New Issue
Block a user