Files
ASLTranslator/training.py
2026-01-10 23:39:57 -06:00

288 lines
10 KiB
Python

# ===============================
# IMPORTS
# ===============================
import os
import json
import math
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from collections import Counter
from multiprocessing import Pool, cpu_count
from functools import partial
from tqdm import tqdm
# ===============================
# DEVICE
# ===============================
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
if device.type == "cuda":
print("GPU:", torch.cuda.get_device_name(0))
# ===============================
# DATA LOADING / FEATURES
# ===============================
def load_kaggle_asl_data(base_path):
train_df = pd.read_csv(os.path.join(base_path, "train.csv"))
with open(os.path.join(base_path, "sign_to_prediction_index_map.json")) as f:
sign_to_idx = json.load(f)
return train_df, sign_to_idx
def extract_hand_landmarks_from_parquet(path):
try:
df = pd.read_parquet(path)
left = df[df["type"]=="left_hand"]
right = df[df["type"]=="right_hand"]
hand = left if len(left) >= len(right) else right
if len(hand) == 0:
return None
frames = sorted(hand['frame'].unique())
landmarks_seq = []
for f in frames:
lm_frame = hand[hand['frame']==f]
lm_list = []
for i in range(21):
lm = lm_frame[lm_frame['landmark_index']==i]
if len(lm) == 0:
lm_list.append([0.0,0.0,0.0])
else:
lm_list.append([float(lm['x'].iloc[0]), float(lm['y'].iloc[0]), float(lm['z'].iloc[0])])
landmarks_seq.append(lm_list)
return np.array(landmarks_seq, dtype=np.float32)
except:
return None
def get_features_sequence_augmented(landmarks_seq, max_frames=100):
if landmarks_seq is None or len(landmarks_seq)==0:
return None, None
# Center on wrist
landmarks_seq -= landmarks_seq[:,0:1,:]
# Scale using wrist → middle finger MCP
scale = np.linalg.norm(landmarks_seq[:,0] - landmarks_seq[:,9], axis=1, keepdims=True)
scale = np.maximum(scale, 1e-6)
landmarks_seq /= scale[:, np.newaxis, :]
# Finger curl distances
tips = [4,8,12,16,20]
bases = [1,5,9,13,17]
curl_features = []
for b,t in zip(bases,tips):
curl_features.append(np.linalg.norm(landmarks_seq[:,t]-landmarks_seq[:,b], axis=1))
curl_features = np.stack(curl_features, axis=1) # (T,5)
# Temporal deltas
deltas = np.zeros_like(landmarks_seq)
deltas[1:] = landmarks_seq[1:] - landmarks_seq[:-1]
# Flatten
seq = np.concatenate([landmarks_seq, deltas, curl_features], axis=1)
# Pad / truncate
T = seq.shape[0]
if T < max_frames:
pad = np.zeros((max_frames - T, seq.shape[1]), dtype=np.float32)
seq = np.concatenate([seq, pad])
else:
seq = seq[:max_frames]
# Mask
valid_mask = np.zeros(max_frames, dtype=bool)
valid_mask[:min(T,max_frames)] = True
return seq, valid_mask
def process_row(row, base_path, max_frames=100):
path = os.path.join(base_path, row["path"])
if not os.path.exists(path):
return None, None, None
lm = extract_hand_landmarks_from_parquet(path)
if lm is None:
return None, None, None
seq, mask = get_features_sequence_augmented(lm, max_frames)
if seq is None:
return None, None, None
return seq, mask, row["sign"]
# ===============================
# DATASET
# ===============================
class ASLSequenceDataset(Dataset):
def __init__(self, X, masks, y):
self.X = torch.from_numpy(X).float()
self.masks = torch.from_numpy(masks)
self.y = torch.from_numpy(y).long()
def __len__(self):
return len(self.X)
def __getitem__(self, idx):
return self.X[idx], self.masks[idx], self.y[idx]
# ===============================
# TRANSFORMER MODEL
# ===============================
class PositionalEncoding(nn.Module):
def __init__(self,d_model,max_len=128):
super().__init__()
pe = torch.zeros(max_len,d_model)
pos = torch.arange(0,max_len,dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0,d_model,2).float()*(-math.log(10000.0)/d_model))
pe[:,0::2] = torch.sin(pos*div_term)
pe[:,1::2] = torch.cos(pos*div_term)
self.register_buffer('pe', pe.unsqueeze(0))
def forward(self,x):
return x + self.pe[:,:x.size(1)]
class TransformerASL(nn.Module):
def __init__(self, input_dim=131, num_classes=250, d_model=192, nhead=6, num_layers=4):
super().__init__()
self.proj = nn.Linear(input_dim,d_model)
self.norm_in = nn.LayerNorm(d_model)
self.pos = PositionalEncoding(d_model)
enc_layer = nn.TransformerEncoderLayer(
d_model=d_model, nhead=nhead, dim_feedforward=d_model*4,
dropout=0.2, activation='gelu', batch_first=True, norm_first=True
)
self.encoder = nn.TransformerEncoder(enc_layer,num_layers=num_layers)
self.head = nn.Sequential(nn.LayerNorm(d_model), nn.Dropout(0.25), nn.Linear(d_model,num_classes))
def forward(self,x,key_padding_mask=None):
x = self.proj(x)
x = self.norm_in(x)
x = self.pos(x)
x = self.encoder(x, src_key_padding_mask=key_padding_mask)
x = x.mean(dim=1)
return self.head(x)
def create_padding_mask(lengths,max_len):
return torch.arange(max_len,device=lengths.device)[None,:] >= lengths[:,None]
# ===============================
# MAIN
# ===============================
def main():
base_path = "asl_kaggle" # adjust path
max_frames = 100
MIN_SAMPLES_PER_CLASS = 6
# Load metadata
print("Loading metadata...")
train_df, sign_to_idx = load_kaggle_asl_data(base_path)
rows = [row for _, row in train_df.iterrows()]
# Extract features
print("Extracting features...")
with Pool(cpu_count()) as pool:
results = list(tqdm(pool.imap(partial(process_row,base_path=base_path,max_frames=max_frames),rows),
total=len(rows)))
X_list, masks_list, y_list = [], [], []
for seq, mask, sign in results:
if seq is not None:
X_list.append(seq)
masks_list.append(mask)
y_list.append(sign)
if not X_list:
print("No valid sequences found")
return
X = np.stack(X_list)
masks = np.stack(masks_list)
print(f"{len(X)} sequences | shape: {X.shape}")
# Normalize
mean = X.mean(axis=(0,1),keepdims=True)
std = X.std(axis=(0,1),keepdims=True)+1e-8
X = (X - mean)/std
# Labels
le = LabelEncoder()
y = le.fit_transform(y_list)
# Remove classes with too few samples
counts = Counter(y)
valid_classes = [cls for cls,cnt in counts.items() if cnt>=MIN_SAMPLES_PER_CLASS]
mask_valid = np.isin(y, valid_classes)
X = X[mask_valid]; masks = masks[mask_valid]; y = y[mask_valid]
le = LabelEncoder(); y = le.fit_transform(y)
print(f"{len(X)} samples | {len(le.classes_)} classes")
# Split
X_train, X_test, masks_train, masks_test, y_train, y_test = train_test_split(
X, masks, y, test_size=0.15, stratify=y, random_state=42
)
# Datasets / loaders
train_dataset = ASLSequenceDataset(X_train, masks_train, y_train)
test_dataset = ASLSequenceDataset(X_test, masks_test, y_test)
train_loader = DataLoader(train_dataset, batch_size=64,shuffle=True,num_workers=4,pin_memory=True)
test_loader = DataLoader(test_dataset, batch_size=96,shuffle=False,num_workers=4,pin_memory=True)
# Model
model = TransformerASL(input_dim=X.shape[2], num_classes=len(le.classes_)).to(device)
print(f"Model params: {sum(p.numel() for p in model.parameters()):,}")
# Class weights
counts = Counter(y_train)
class_weights = np.array([len(y_train)/ (len(counts)*counts[i]) for i in range(len(counts))],dtype=np.float32)
criterion = nn.CrossEntropyLoss(weight=torch.tensor(class_weights).to(device),label_smoothing=0.05)
optimizer = optim.AdamW(model.parameters(), lr=3e-4, weight_decay=1e-4)
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10)
# Training / eval
def train_epoch():
model.train()
total_loss=0; correct=total=0
for x, mask, yb in tqdm(train_loader, desc="Train"):
x, mask, yb = x.to(device), mask.to(device), yb.to(device)
lengths = mask.sum(dim=1)
pad_mask = create_padding_mask(lengths, x.size(1))
optimizer.zero_grad(set_to_none=True)
logits = model(x,key_padding_mask=pad_mask)
loss = criterion(logits,yb)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(),0.8)
optimizer.step()
total_loss += loss.item()
correct += (logits.argmax(-1)==yb).sum().item()
total += yb.size(0)
return total_loss/len(train_loader), correct/total*100
@torch.no_grad()
def evaluate():
model.eval()
correct=total=0
for x, mask, yb in test_loader:
x, mask, yb = x.to(device), mask.to(device), yb.to(device)
lengths = mask.sum(dim=1)
pad_mask = create_padding_mask(lengths, x.size(1))
logits = model(x,key_padding_mask=pad_mask)
correct += (logits.argmax(-1)==yb).sum().item()
total += yb.size(0)
return correct/total*100 if total>0 else 0.0
# Train loop
best_acc=0.0; patience=15; wait=0; epochs=70
for epoch in range(epochs):
loss, train_acc = train_epoch()
test_acc = evaluate()
print(f"[{epoch+1:2d}/{epochs}] loss:{loss:.4f} train:{train_acc:.2f}% test:{test_acc:.2f}%")
scheduler.step()
if test_acc>best_acc:
best_acc=test_acc; wait=0
torch.save({
'model':model.state_dict(),
'optimizer':optimizer.state_dict(),
'label_encoder_classes':le.classes_,
'acc':best_acc,
'epoch':epoch
},"best_asl_transformer.pth")
print(" → New best saved")
else:
wait+=1
if wait>=patience:
print("Early stopping")
break
print(f"\nBest test accuracy reached: {best_acc:.2f}%")
if __name__=="__main__":
main()