# =============================== # IMPORTS # =============================== import os import json import math import numpy as np import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import Dataset, DataLoader from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from collections import Counter from multiprocessing import Pool, cpu_count from functools import partial from tqdm import tqdm # =============================== # DEVICE # =============================== device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") if device.type == "cuda": print("GPU:", torch.cuda.get_device_name(0)) # =============================== # DATA LOADING / FEATURES # =============================== def load_kaggle_asl_data(base_path): train_df = pd.read_csv(os.path.join(base_path, "train.csv")) with open(os.path.join(base_path, "sign_to_prediction_index_map.json")) as f: sign_to_idx = json.load(f) return train_df, sign_to_idx def extract_hand_landmarks_from_parquet(path): try: df = pd.read_parquet(path) left = df[df["type"]=="left_hand"] right = df[df["type"]=="right_hand"] hand = left if len(left) >= len(right) else right if len(hand) == 0: return None frames = sorted(hand['frame'].unique()) landmarks_seq = [] for f in frames: lm_frame = hand[hand['frame']==f] lm_list = [] for i in range(21): lm = lm_frame[lm_frame['landmark_index']==i] if len(lm) == 0: lm_list.append([0.0,0.0,0.0]) else: lm_list.append([float(lm['x'].iloc[0]), float(lm['y'].iloc[0]), float(lm['z'].iloc[0])]) landmarks_seq.append(lm_list) return np.array(landmarks_seq, dtype=np.float32) except: return None def get_features_sequence_augmented(landmarks_seq, max_frames=100): if landmarks_seq is None or len(landmarks_seq)==0: return None, None # Center on wrist landmarks_seq -= landmarks_seq[:,0:1,:] # Scale using wrist → middle finger MCP scale = np.linalg.norm(landmarks_seq[:,0] - landmarks_seq[:,9], axis=1, keepdims=True) scale = np.maximum(scale, 1e-6) landmarks_seq /= scale[:, np.newaxis, :] # Finger curl distances tips = [4,8,12,16,20] bases = [1,5,9,13,17] curl_features = [] for b,t in zip(bases,tips): curl_features.append(np.linalg.norm(landmarks_seq[:,t]-landmarks_seq[:,b], axis=1)) curl_features = np.stack(curl_features, axis=1) # (T,5) # Temporal deltas deltas = np.zeros_like(landmarks_seq) deltas[1:] = landmarks_seq[1:] - landmarks_seq[:-1] # Flatten seq = np.concatenate([landmarks_seq, deltas, curl_features], axis=1) # Pad / truncate T = seq.shape[0] if T < max_frames: pad = np.zeros((max_frames - T, seq.shape[1]), dtype=np.float32) seq = np.concatenate([seq, pad]) else: seq = seq[:max_frames] # Mask valid_mask = np.zeros(max_frames, dtype=bool) valid_mask[:min(T,max_frames)] = True return seq, valid_mask def process_row(row, base_path, max_frames=100): path = os.path.join(base_path, row["path"]) if not os.path.exists(path): return None, None, None lm = extract_hand_landmarks_from_parquet(path) if lm is None: return None, None, None seq, mask = get_features_sequence_augmented(lm, max_frames) if seq is None: return None, None, None return seq, mask, row["sign"] # =============================== # DATASET # =============================== class ASLSequenceDataset(Dataset): def __init__(self, X, masks, y): self.X = torch.from_numpy(X).float() self.masks = torch.from_numpy(masks) self.y = torch.from_numpy(y).long() def __len__(self): return len(self.X) def __getitem__(self, idx): return self.X[idx], self.masks[idx], self.y[idx] # =============================== # TRANSFORMER MODEL # =============================== class PositionalEncoding(nn.Module): def __init__(self,d_model,max_len=128): super().__init__() pe = torch.zeros(max_len,d_model) pos = torch.arange(0,max_len,dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0,d_model,2).float()*(-math.log(10000.0)/d_model)) pe[:,0::2] = torch.sin(pos*div_term) pe[:,1::2] = torch.cos(pos*div_term) self.register_buffer('pe', pe.unsqueeze(0)) def forward(self,x): return x + self.pe[:,:x.size(1)] class TransformerASL(nn.Module): def __init__(self, input_dim=131, num_classes=250, d_model=192, nhead=6, num_layers=4): super().__init__() self.proj = nn.Linear(input_dim,d_model) self.norm_in = nn.LayerNorm(d_model) self.pos = PositionalEncoding(d_model) enc_layer = nn.TransformerEncoderLayer( d_model=d_model, nhead=nhead, dim_feedforward=d_model*4, dropout=0.2, activation='gelu', batch_first=True, norm_first=True ) self.encoder = nn.TransformerEncoder(enc_layer,num_layers=num_layers) self.head = nn.Sequential(nn.LayerNorm(d_model), nn.Dropout(0.25), nn.Linear(d_model,num_classes)) def forward(self,x,key_padding_mask=None): x = self.proj(x) x = self.norm_in(x) x = self.pos(x) x = self.encoder(x, src_key_padding_mask=key_padding_mask) x = x.mean(dim=1) return self.head(x) def create_padding_mask(lengths,max_len): return torch.arange(max_len,device=lengths.device)[None,:] >= lengths[:,None] # =============================== # MAIN # =============================== def main(): base_path = "asl_kaggle" # adjust path max_frames = 100 MIN_SAMPLES_PER_CLASS = 6 # Load metadata print("Loading metadata...") train_df, sign_to_idx = load_kaggle_asl_data(base_path) rows = [row for _, row in train_df.iterrows()] # Extract features print("Extracting features...") with Pool(cpu_count()) as pool: results = list(tqdm(pool.imap(partial(process_row,base_path=base_path,max_frames=max_frames),rows), total=len(rows))) X_list, masks_list, y_list = [], [], [] for seq, mask, sign in results: if seq is not None: X_list.append(seq) masks_list.append(mask) y_list.append(sign) if not X_list: print("No valid sequences found") return X = np.stack(X_list) masks = np.stack(masks_list) print(f"{len(X)} sequences | shape: {X.shape}") # Normalize mean = X.mean(axis=(0,1),keepdims=True) std = X.std(axis=(0,1),keepdims=True)+1e-8 X = (X - mean)/std # Labels le = LabelEncoder() y = le.fit_transform(y_list) # Remove classes with too few samples counts = Counter(y) valid_classes = [cls for cls,cnt in counts.items() if cnt>=MIN_SAMPLES_PER_CLASS] mask_valid = np.isin(y, valid_classes) X = X[mask_valid]; masks = masks[mask_valid]; y = y[mask_valid] le = LabelEncoder(); y = le.fit_transform(y) print(f"{len(X)} samples | {len(le.classes_)} classes") # Split X_train, X_test, masks_train, masks_test, y_train, y_test = train_test_split( X, masks, y, test_size=0.15, stratify=y, random_state=42 ) # Datasets / loaders train_dataset = ASLSequenceDataset(X_train, masks_train, y_train) test_dataset = ASLSequenceDataset(X_test, masks_test, y_test) train_loader = DataLoader(train_dataset, batch_size=64,shuffle=True,num_workers=4,pin_memory=True) test_loader = DataLoader(test_dataset, batch_size=96,shuffle=False,num_workers=4,pin_memory=True) # Model model = TransformerASL(input_dim=X.shape[2], num_classes=len(le.classes_)).to(device) print(f"Model params: {sum(p.numel() for p in model.parameters()):,}") # Class weights counts = Counter(y_train) class_weights = np.array([len(y_train)/ (len(counts)*counts[i]) for i in range(len(counts))],dtype=np.float32) criterion = nn.CrossEntropyLoss(weight=torch.tensor(class_weights).to(device),label_smoothing=0.05) optimizer = optim.AdamW(model.parameters(), lr=3e-4, weight_decay=1e-4) scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10) # Training / eval def train_epoch(): model.train() total_loss=0; correct=total=0 for x, mask, yb in tqdm(train_loader, desc="Train"): x, mask, yb = x.to(device), mask.to(device), yb.to(device) lengths = mask.sum(dim=1) pad_mask = create_padding_mask(lengths, x.size(1)) optimizer.zero_grad(set_to_none=True) logits = model(x,key_padding_mask=pad_mask) loss = criterion(logits,yb) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(),0.8) optimizer.step() total_loss += loss.item() correct += (logits.argmax(-1)==yb).sum().item() total += yb.size(0) return total_loss/len(train_loader), correct/total*100 @torch.no_grad() def evaluate(): model.eval() correct=total=0 for x, mask, yb in test_loader: x, mask, yb = x.to(device), mask.to(device), yb.to(device) lengths = mask.sum(dim=1) pad_mask = create_padding_mask(lengths, x.size(1)) logits = model(x,key_padding_mask=pad_mask) correct += (logits.argmax(-1)==yb).sum().item() total += yb.size(0) return correct/total*100 if total>0 else 0.0 # Train loop best_acc=0.0; patience=15; wait=0; epochs=70 for epoch in range(epochs): loss, train_acc = train_epoch() test_acc = evaluate() print(f"[{epoch+1:2d}/{epochs}] loss:{loss:.4f} train:{train_acc:.2f}% test:{test_acc:.2f}%") scheduler.step() if test_acc>best_acc: best_acc=test_acc; wait=0 torch.save({ 'model':model.state_dict(), 'optimizer':optimizer.state_dict(), 'label_encoder_classes':le.classes_, 'acc':best_acc, 'epoch':epoch },"best_asl_transformer.pth") print(" → New best saved") else: wait+=1 if wait>=patience: print("Early stopping") break print(f"\nBest test accuracy reached: {best_acc:.2f}%") if __name__=="__main__": main()