Initial Commit

This commit is contained in:
2026-01-10 21:41:25 -06:00
commit 2930ff2f2f
10 changed files with 990 additions and 0 deletions

500
training.py Normal file
View File

@@ -0,0 +1,500 @@
import mediapipe as mp
import numpy as np
import os
import pandas as pd
import json
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import pickle
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
import math
from pathlib import Path
# Load the dataset
def load_kaggle_asl_data(base_path='asl_kaggle'):
"""
Load data from Kaggle ASL dataset format
base_path should contain:
- train.csv
- train_landmark_files/ directory
- sign_to_prediction_index_map.json
"""
# Load train.csv
train_df = pd.read_csv(os.path.join(base_path, 'train.csv'))
# Load sign mapping
with open(os.path.join(base_path, 'sign_to_prediction_index_map.json'), 'r') as f:
sign_to_idx = json.load(f)
print(f"Total sequences: {len(train_df)}")
print(f"Unique signs: {len(sign_to_idx)}")
print(f"Signs: {list(sign_to_idx.keys())[:10]}...") # Show first 10
return train_df, sign_to_idx
def extract_hand_landmarks_from_parquet(parquet_path):
"""
Extract hand landmarks from a parquet file
The file contains landmarks for face, left_hand, pose, right_hand
We only care about hand landmarks
"""
df = pd.read_parquet(parquet_path)
# Filter for hand landmarks only (left_hand or right_hand)
# For ASL, we'll use whichever hand is dominant in the sequence
left_hand = df[df['type'] == 'left_hand']
right_hand = df[df['type'] == 'right_hand']
# Use the hand with more detected landmarks
if len(left_hand) > len(right_hand):
hand_df = left_hand
elif len(right_hand) > 0:
hand_df = right_hand
else:
return None # No hand detected
# Get unique frames
frames = hand_df['frame'].unique()
# We'll use the middle frame (most stable) or average across frames
# For now, let's average the landmarks across all frames
landmarks_list = []
for landmark_idx in range(21): # MediaPipe has 21 hand landmarks
landmark_data = hand_df[hand_df['landmark_index'] == landmark_idx]
if len(landmark_data) == 0:
# Missing landmark, use zeros
landmarks_list.append([0.0, 0.0, 0.0])
else:
# Average across frames
x = landmark_data['x'].mean()
y = landmark_data['y'].mean()
z = landmark_data['z'].mean()
landmarks_list.append([x, y, z])
return np.array(landmarks_list, dtype=np.float32)
def get_optimized_features(landmarks_array):
"""
Extract optimally normalized relative coordinates from landmark array
landmarks_array: (21, 3) numpy array
Returns 77 features
"""
if landmarks_array is None:
return None
points = landmarks_array.copy()
# Translation invariance
wrist = points[0].copy()
points_centered = points - wrist
# Scale invariance
palm_size = np.linalg.norm(points[9] - points[0])
if palm_size < 1e-6:
palm_size = 1.0
points_normalized = points_centered / palm_size
# Standardization
mean = np.mean(points_normalized, axis=0)
std = np.std(points_normalized, axis=0) + 1e-8
points_standardized = (points_normalized - mean) / std
features = points_standardized.flatten()
# Derived features
finger_tips = [4, 8, 12, 16, 20]
tip_distances = []
for i in range(len(finger_tips) - 1):
dist = np.linalg.norm(points_normalized[finger_tips[i]] - points_normalized[finger_tips[i + 1]])
tip_distances.append(dist)
palm_center = np.mean(points_normalized[[0, 5, 9, 13, 17]], axis=0)
tip_to_palm = []
for tip in finger_tips:
dist = np.linalg.norm(points_normalized[tip] - palm_center)
tip_to_palm.append(dist)
finger_curls = []
finger_bases = [1, 5, 9, 13, 17]
for base, tip in zip(finger_bases, finger_tips):
curl = np.linalg.norm(points_normalized[tip] - points_normalized[base])
finger_curls.append(curl)
all_features = np.concatenate([
features,
tip_distances,
tip_to_palm,
finger_curls
])
return all_features.astype(np.float32)
# Load dataset
print("Loading Kaggle ASL dataset...")
base_path = 'asl_kaggle' # Change this to your dataset path
train_df, sign_to_idx = load_kaggle_asl_data(base_path)
# Process landmarks
X = []
y = []
print("\nProcessing landmark files...")
for idx, row in train_df.iterrows():
if idx % 1000 == 0:
print(f"Processed {idx}/{len(train_df)} sequences...")
# Construct full path
parquet_path = os.path.join(base_path, row['path'])
if not os.path.exists(parquet_path):
continue
# Extract landmarks
landmarks = extract_hand_landmarks_from_parquet(parquet_path)
if landmarks is None:
continue
# Get features
features = get_optimized_features(landmarks)
if features is None:
continue
X.append(features)
y.append(row['sign'])
print(f"\nSuccessfully processed {len(X)} sequences")
if len(X) == 0:
print("ERROR: No valid sequences found! Check your dataset path.")
exit()
X = np.array(X, dtype=np.float32)
y = np.array(y)
print(f"Feature vector size: {X.shape[1]} dimensions")
# Clean data
if np.isnan(X).any():
print("WARNING: NaN values detected, removing affected samples...")
mask = ~np.isnan(X).any(axis=1)
X = X[mask]
y = y[mask]
if np.isinf(X).any():
print("WARNING: Inf values detected, removing affected samples...")
mask = ~np.isinf(X).any(axis=1)
X = X[mask]
y = y[mask]
# Encode labels using the provided mapping
label_encoder = LabelEncoder()
y_encoded = label_encoder.fit_transform(y)
num_classes = len(label_encoder.classes_)
print(f"\nNumber of classes: {num_classes}")
print(f"Sample classes: {label_encoder.classes_[:20]}...")
# Split data
X_train, X_test, y_train, y_test = train_test_split(
X, y_encoded, test_size=0.2, random_state=42, stratify=y_encoded
)
# PyTorch Dataset
class ASLDataset(Dataset):
def __init__(self, X, y):
self.X = torch.FloatTensor(X)
self.y = torch.LongTensor(y)
def __len__(self):
return len(self.X)
def __getitem__(self, idx):
return self.X[idx], self.y[idx]
train_dataset = ASLDataset(X_train, y_train)
test_dataset = ASLDataset(X_test, y_test)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False, num_workers=4)
# Positional Encoding for Transformer
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=100):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
return x + self.pe[:, :x.size(1), :]
# Multi-Head Self-Attention Transformer + CNN Hybrid
class TransformerCNN_ASL(nn.Module):
def __init__(self, input_dim=77, num_classes=250, d_model=512, nhead=8, num_layers=6, dim_feedforward=2048):
super(TransformerCNN_ASL, self).__init__()
self.input_dim = input_dim
self.d_model = d_model
# Input projection
self.input_projection = nn.Linear(input_dim, d_model)
self.input_norm = nn.LayerNorm(d_model)
# Positional encoding
self.pos_encoder = PositionalEncoding(d_model, max_len=100)
# Transformer Encoder with Self-Attention
encoder_layer = nn.TransformerEncoderLayer(
d_model=d_model,
nhead=nhead,
dim_feedforward=dim_feedforward,
dropout=0.1,
activation='gelu',
batch_first=True,
norm_first=True
)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
# CNN Blocks for pattern detection
self.conv1 = nn.Conv1d(d_model, 1024, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm1d(1024)
self.pool1 = nn.MaxPool1d(2)
self.dropout1 = nn.Dropout(0.3)
self.conv2 = nn.Conv1d(1024, 2048, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm1d(2048)
self.pool2 = nn.MaxPool1d(2)
self.dropout2 = nn.Dropout(0.3)
self.conv3 = nn.Conv1d(2048, 4096, kernel_size=3, padding=1)
self.bn3 = nn.BatchNorm1d(4096)
self.pool3 = nn.AdaptiveMaxPool1d(1) # Global pooling
self.dropout3 = nn.Dropout(0.4)
# Fully connected layers
self.fc1 = nn.Linear(4096, 4096)
self.bn_fc1 = nn.BatchNorm1d(4096)
self.dropout_fc1 = nn.Dropout(0.5)
self.fc2 = nn.Linear(4096, 2048)
self.bn_fc2 = nn.BatchNorm1d(2048)
self.dropout_fc2 = nn.Dropout(0.4)
self.fc3 = nn.Linear(2048, 1024)
self.bn_fc3 = nn.BatchNorm1d(1024)
self.dropout_fc3 = nn.Dropout(0.3)
self.fc4 = nn.Linear(1024, num_classes)
def forward(self, x):
batch_size = x.size(0)
# Project to d_model
x = self.input_projection(x)
x = self.input_norm(x)
x = x.unsqueeze(1)
# Add positional encoding
x = self.pos_encoder(x)
# Transformer encoder with self-attention
x = self.transformer_encoder(x)
# Reshape for CNN
x = x.permute(0, 2, 1)
# CNN pattern detection
x = F.gelu(self.bn1(self.conv1(x)))
x = self.pool1(x)
x = self.dropout1(x)
x = F.gelu(self.bn2(self.conv2(x)))
x = self.pool2(x)
x = self.dropout2(x)
x = F.gelu(self.bn3(self.conv3(x)))
x = self.pool3(x)
x = self.dropout3(x)
# Flatten
x = x.view(batch_size, -1)
# Fully connected layers
x = F.gelu(self.bn_fc1(self.fc1(x)))
x = self.dropout_fc1(x)
x = F.gelu(self.bn_fc2(self.fc2(x)))
x = self.dropout_fc2(x)
x = F.gelu(self.bn_fc3(self.fc3(x)))
x = self.dropout_fc3(x)
x = self.fc4(x)
return x
# Initialize model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"\nUsing device: {device}")
model = TransformerCNN_ASL(
input_dim=X.shape[1],
num_classes=num_classes,
d_model=512,
nhead=8,
num_layers=6,
dim_feedforward=2048
).to(device)
# Count parameters
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Total parameters: {total_params:,}")
print(f"Trainable parameters: {trainable_params:,}")
if total_params > 50_000_000:
print(f"WARNING: Model has {total_params:,} parameters, exceeding 50M limit!")
else:
print(f"Model is within 50M parameter limit ✓")
# Loss and optimizer
criterion = nn.CrossEntropyLoss(label_smoothing=0.1)
optimizer = optim.AdamW(model.parameters(), lr=0.001, weight_decay=1e-4)
# Cosine annealing learning rate scheduler
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10, T_mult=2)
# Training function
def train_epoch(model, loader, criterion, optimizer, device):
model.train()
total_loss = 0
correct = 0
total = 0
for X_batch, y_batch in loader:
X_batch, y_batch = X_batch.to(device), y_batch.to(device)
optimizer.zero_grad()
outputs = model(X_batch)
loss = criterion(outputs, y_batch)
loss.backward()
# Gradient clipping
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
total_loss += loss.item()
_, predicted = outputs.max(1)
total += y_batch.size(0)
correct += predicted.eq(y_batch).sum().item()
return total_loss / len(loader), 100. * correct / total
# Evaluation function
def evaluate(model, loader, device):
model.eval()
correct = 0
total = 0
with torch.no_grad():
for X_batch, y_batch in loader:
X_batch, y_batch = X_batch.to(device), y_batch.to(device)
outputs = model(X_batch)
_, predicted = outputs.max(1)
total += y_batch.size(0)
correct += predicted.eq(y_batch).sum().item()
return 100. * correct / total
# Dynamic epoch calculation
def calculate_epochs(dataset_size):
if dataset_size < 1000:
return 200
elif dataset_size < 5000:
return 150
elif dataset_size < 10000:
return 100
elif dataset_size < 50000:
return 75
else:
return 50
num_epochs = calculate_epochs(len(X_train))
print(f"\nDynamic epoch calculation: {num_epochs} epochs for {len(X_train)} training samples")
# Early stopping
patience = 20
best_acc = 0
patience_counter = 0
print("\nStarting training with Transformer + CNN architecture...")
for epoch in range(num_epochs):
train_loss, train_acc = train_epoch(model, train_loader, criterion, optimizer, device)
test_acc = evaluate(model, test_loader, device)
scheduler.step()
if test_acc > best_acc:
best_acc = test_acc
patience_counter = 0
# Save best model
torch.save({
'model_state_dict': model.state_dict(),
'label_encoder': label_encoder,
'num_classes': num_classes,
'input_dim': X.shape[1],
'sign_to_idx': sign_to_idx,
'model_config': {
'd_model': 512,
'nhead': 8,
'num_layers': 6,
'dim_feedforward': 2048
}
}, 'asl_kaggle_transformer.pth')
else:
patience_counter += 1
if (epoch + 1) % 5 == 0:
current_lr = optimizer.param_groups[0]['lr']
print(
f"Epoch {epoch + 1}/{num_epochs} | Loss: {train_loss:.4f} | Train: {train_acc:.2f}% | Test: {test_acc:.2f}% | Best: {best_acc:.2f}% | LR: {current_lr:.6f}")
# Early stopping
if patience_counter >= patience:
print(f"\nEarly stopping triggered at epoch {epoch + 1}")
break
print(f"\nTraining complete! Best test accuracy: {best_acc:.2f}%")
print("Model saved to asl_kaggle_transformer.pth")