Initial Commit
This commit is contained in:
2
.gitignore
vendored
Normal file
2
.gitignore
vendored
Normal file
@@ -0,0 +1,2 @@
|
||||
asl_kaggle/
|
||||
hand_landmarker.task
|
||||
8
.idea/.gitignore
generated
vendored
Normal file
8
.idea/.gitignore
generated
vendored
Normal file
@@ -0,0 +1,8 @@
|
||||
# Default ignored files
|
||||
/shelf/
|
||||
/workspace.xml
|
||||
# Editor-based HTTP Client requests
|
||||
/httpRequests/
|
||||
# Datasource local storage ignored files
|
||||
/dataSources/
|
||||
/dataSources.local.xml
|
||||
10
.idea/ASLtranslator.iml
generated
Normal file
10
.idea/ASLtranslator.iml
generated
Normal file
@@ -0,0 +1,10 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<module type="PYTHON_MODULE" version="4">
|
||||
<component name="NewModuleRootManager">
|
||||
<content url="file://$MODULE_DIR$">
|
||||
<excludeFolder url="file://$MODULE_DIR$/.venv" />
|
||||
</content>
|
||||
<orderEntry type="jdk" jdkName="Python 3.14 (ASLtranslator)" jdkType="Python SDK" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
</module>
|
||||
6
.idea/inspectionProfiles/profiles_settings.xml
generated
Normal file
6
.idea/inspectionProfiles/profiles_settings.xml
generated
Normal file
@@ -0,0 +1,6 @@
|
||||
<component name="InspectionProjectProfileManager">
|
||||
<settings>
|
||||
<option name="USE_PROJECT_PROFILE" value="false" />
|
||||
<version value="1.0" />
|
||||
</settings>
|
||||
</component>
|
||||
7
.idea/misc.xml
generated
Normal file
7
.idea/misc.xml
generated
Normal file
@@ -0,0 +1,7 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="Black">
|
||||
<option name="sdkName" value="Python 3.14 (ASLtranslator)" />
|
||||
</component>
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.14 (ASLtranslator)" project-jdk-type="Python SDK" />
|
||||
</project>
|
||||
8
.idea/modules.xml
generated
Normal file
8
.idea/modules.xml
generated
Normal file
@@ -0,0 +1,8 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectModuleManager">
|
||||
<modules>
|
||||
<module fileurl="file://$PROJECT_DIR$/.idea/ASLtranslator.iml" filepath="$PROJECT_DIR$/.idea/ASLtranslator.iml" />
|
||||
</modules>
|
||||
</component>
|
||||
</project>
|
||||
6
.idea/vcs.xml
generated
Normal file
6
.idea/vcs.xml
generated
Normal file
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="VcsDirectoryMappings">
|
||||
<mapping directory="$PROJECT_DIR$" vcs="Git" />
|
||||
</component>
|
||||
</project>
|
||||
443
test.py
Normal file
443
test.py
Normal file
@@ -0,0 +1,443 @@
|
||||
import mediapipe as mp
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import math
|
||||
|
||||
|
||||
# Positional Encoding
|
||||
class PositionalEncoding(nn.Module):
|
||||
def __init__(self, d_model, max_len=100):
|
||||
super(PositionalEncoding, self).__init__()
|
||||
|
||||
pe = torch.zeros(max_len, d_model)
|
||||
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
||||
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
||||
|
||||
pe[:, 0::2] = torch.sin(position * div_term)
|
||||
pe[:, 1::2] = torch.cos(position * div_term)
|
||||
|
||||
pe = pe.unsqueeze(0)
|
||||
self.register_buffer('pe', pe)
|
||||
|
||||
def forward(self, x):
|
||||
return x + self.pe[:, :x.size(1), :]
|
||||
|
||||
|
||||
# Model architecture
|
||||
class TransformerCNN_ASL(nn.Module):
|
||||
def __init__(self, input_dim=77, num_classes=250, d_model=512, nhead=8, num_layers=6, dim_feedforward=2048):
|
||||
super(TransformerCNN_ASL, self).__init__()
|
||||
|
||||
self.input_dim = input_dim
|
||||
self.d_model = d_model
|
||||
|
||||
# Input projection
|
||||
self.input_projection = nn.Linear(input_dim, d_model)
|
||||
self.input_norm = nn.LayerNorm(d_model)
|
||||
|
||||
# Positional encoding
|
||||
self.pos_encoder = PositionalEncoding(d_model, max_len=100)
|
||||
|
||||
# Transformer Encoder with Self-Attention
|
||||
encoder_layer = nn.TransformerEncoderLayer(
|
||||
d_model=d_model,
|
||||
nhead=nhead,
|
||||
dim_feedforward=dim_feedforward,
|
||||
dropout=0.1,
|
||||
activation='gelu',
|
||||
batch_first=True,
|
||||
norm_first=True
|
||||
)
|
||||
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
||||
|
||||
# CNN Blocks for pattern detection
|
||||
self.conv1 = nn.Conv1d(d_model, 1024, kernel_size=3, padding=1)
|
||||
self.bn1 = nn.BatchNorm1d(1024)
|
||||
self.pool1 = nn.MaxPool1d(2)
|
||||
self.dropout1 = nn.Dropout(0.3)
|
||||
|
||||
self.conv2 = nn.Conv1d(1024, 2048, kernel_size=3, padding=1)
|
||||
self.bn2 = nn.BatchNorm1d(2048)
|
||||
self.pool2 = nn.MaxPool1d(2)
|
||||
self.dropout2 = nn.Dropout(0.3)
|
||||
|
||||
self.conv3 = nn.Conv1d(2048, 4096, kernel_size=3, padding=1)
|
||||
self.bn3 = nn.BatchNorm1d(4096)
|
||||
self.pool3 = nn.AdaptiveMaxPool1d(1) # Global pooling
|
||||
self.dropout3 = nn.Dropout(0.4)
|
||||
|
||||
# Fully connected layers
|
||||
self.fc1 = nn.Linear(4096, 4096)
|
||||
self.bn_fc1 = nn.BatchNorm1d(4096)
|
||||
self.dropout_fc1 = nn.Dropout(0.5)
|
||||
|
||||
self.fc2 = nn.Linear(4096, 2048)
|
||||
self.bn_fc2 = nn.BatchNorm1d(2048)
|
||||
self.dropout_fc2 = nn.Dropout(0.4)
|
||||
|
||||
self.fc3 = nn.Linear(2048, 1024)
|
||||
self.bn_fc3 = nn.BatchNorm1d(1024)
|
||||
self.dropout_fc3 = nn.Dropout(0.3)
|
||||
|
||||
self.fc4 = nn.Linear(1024, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
batch_size = x.size(0)
|
||||
|
||||
# Project to d_model
|
||||
x = self.input_projection(x)
|
||||
x = self.input_norm(x)
|
||||
x = x.unsqueeze(1)
|
||||
|
||||
# Add positional encoding
|
||||
x = self.pos_encoder(x)
|
||||
|
||||
# Transformer encoder with self-attention
|
||||
x = self.transformer_encoder(x)
|
||||
|
||||
# Reshape for CNN
|
||||
x = x.permute(0, 2, 1)
|
||||
|
||||
# CNN pattern detection
|
||||
x = F.gelu(self.bn1(self.conv1(x)))
|
||||
x = self.pool1(x)
|
||||
x = self.dropout1(x)
|
||||
|
||||
x = F.gelu(self.bn2(self.conv2(x)))
|
||||
x = self.pool2(x)
|
||||
x = self.dropout2(x)
|
||||
|
||||
x = F.gelu(self.bn3(self.conv3(x)))
|
||||
x = self.pool3(x)
|
||||
x = self.dropout3(x)
|
||||
|
||||
# Flatten
|
||||
x = x.view(batch_size, -1)
|
||||
|
||||
# Fully connected layers
|
||||
x = F.gelu(self.bn_fc1(self.fc1(x)))
|
||||
x = self.dropout_fc1(x)
|
||||
|
||||
x = F.gelu(self.bn_fc2(self.fc2(x)))
|
||||
x = self.dropout_fc2(x)
|
||||
|
||||
x = F.gelu(self.bn_fc3(self.fc3(x)))
|
||||
x = self.dropout_fc3(x)
|
||||
|
||||
x = self.fc4(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
# Load the trained model
|
||||
print("Loading model...")
|
||||
checkpoint = torch.load('asl_kaggle_transformer.pth', map_location='cpu')
|
||||
label_encoder = checkpoint['label_encoder']
|
||||
num_classes = checkpoint['num_classes']
|
||||
input_dim = checkpoint['input_dim']
|
||||
config = checkpoint['model_config']
|
||||
|
||||
model = TransformerCNN_ASL(
|
||||
input_dim=input_dim,
|
||||
num_classes=num_classes,
|
||||
d_model=config['d_model'],
|
||||
nhead=config['nhead'],
|
||||
num_layers=config['num_layers'],
|
||||
dim_feedforward=config['dim_feedforward']
|
||||
)
|
||||
model.load_state_dict(checkpoint['model_state_dict'])
|
||||
model.eval()
|
||||
|
||||
total_params = sum(p.numel() for p in model.parameters())
|
||||
print(f"Loaded Transformer+CNN model")
|
||||
print(f"Total parameters: {total_params:,}")
|
||||
print(f"Number of ASL signs: {num_classes}")
|
||||
print(f"Sample signs: {label_encoder.classes_[:10]}")
|
||||
|
||||
# Setup MediaPipe
|
||||
BaseOptions = mp.tasks.BaseOptions
|
||||
HandLandmarker = mp.tasks.vision.HandLandmarker
|
||||
HandLandmarkerOptions = mp.tasks.vision.HandLandmarkerOptions
|
||||
VisionRunningMode = mp.tasks.vision.RunningMode
|
||||
|
||||
options = HandLandmarkerOptions(
|
||||
base_options=BaseOptions(model_asset_path='hand_landmarker.task'),
|
||||
running_mode=VisionRunningMode.VIDEO,
|
||||
num_hands=1,
|
||||
min_hand_detection_confidence=0.5,
|
||||
min_hand_presence_confidence=0.5,
|
||||
min_tracking_confidence=0.5
|
||||
)
|
||||
|
||||
landmarker = HandLandmarker.create_from_options(options)
|
||||
|
||||
|
||||
def get_optimized_features(hand_landmarks):
|
||||
"""
|
||||
Extract optimally normalized relative coordinates from MediaPipe landmarks
|
||||
Returns 77 features
|
||||
"""
|
||||
# Extract raw coordinates
|
||||
points = np.array([[lm.x, lm.y, lm.z] for lm in hand_landmarks], dtype=np.float32)
|
||||
|
||||
# Step 1: Translation invariance - center on wrist
|
||||
wrist = points[0].copy()
|
||||
points_centered = points - wrist
|
||||
|
||||
# Step 2: Scale invariance - normalize by palm size
|
||||
palm_size = np.linalg.norm(points[9] - points[0]) # wrist to middle finger base
|
||||
if palm_size < 1e-6:
|
||||
palm_size = 1.0
|
||||
points_normalized = points_centered / palm_size
|
||||
|
||||
# Step 3: Standardization
|
||||
mean = np.mean(points_normalized, axis=0)
|
||||
std = np.std(points_normalized, axis=0) + 1e-8
|
||||
points_standardized = (points_normalized - mean) / std
|
||||
|
||||
# Flatten base features (63 features)
|
||||
features = points_standardized.flatten()
|
||||
|
||||
# Step 4: Derived features
|
||||
finger_tips = [4, 8, 12, 16, 20] # Thumb, Index, Middle, Ring, Pinky
|
||||
|
||||
# Distances between consecutive fingertips (4 distances)
|
||||
tip_distances = []
|
||||
for i in range(len(finger_tips) - 1):
|
||||
dist = np.linalg.norm(points_normalized[finger_tips[i]] - points_normalized[finger_tips[i + 1]])
|
||||
tip_distances.append(dist)
|
||||
|
||||
# Distance of each fingertip from palm center (5 distances)
|
||||
palm_center = np.mean(points_normalized[[0, 5, 9, 13, 17]], axis=0)
|
||||
tip_to_palm = []
|
||||
for tip in finger_tips:
|
||||
dist = np.linalg.norm(points_normalized[tip] - palm_center)
|
||||
tip_to_palm.append(dist)
|
||||
|
||||
# Finger curl indicators (5 curls)
|
||||
finger_curls = []
|
||||
finger_bases = [1, 5, 9, 13, 17]
|
||||
for base, tip in zip(finger_bases, finger_tips):
|
||||
curl = np.linalg.norm(points_normalized[tip] - points_normalized[base])
|
||||
finger_curls.append(curl)
|
||||
|
||||
# Combine all features: 63 + 4 + 5 + 5 = 77
|
||||
all_features = np.concatenate([
|
||||
features,
|
||||
tip_distances,
|
||||
tip_to_palm,
|
||||
finger_curls
|
||||
])
|
||||
|
||||
return all_features.astype(np.float32)
|
||||
|
||||
|
||||
# Initialize webcam
|
||||
cap = cv2.VideoCapture(0)
|
||||
|
||||
if not cap.isOpened():
|
||||
print("Error: Cannot open webcam")
|
||||
exit()
|
||||
|
||||
# Set camera resolution for better performance
|
||||
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
|
||||
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
|
||||
|
||||
frame_count = 0
|
||||
fps_counter = 0
|
||||
fps_start_time = cv2.getTickCount()
|
||||
current_fps = 0
|
||||
|
||||
# Prediction smoothing buffer
|
||||
from collections import deque
|
||||
|
||||
prediction_buffer = deque(maxlen=10)
|
||||
|
||||
print("\n" + "=" * 60)
|
||||
print("ASL Recognition - Transformer+CNN Model")
|
||||
print("=" * 60)
|
||||
print("Controls:")
|
||||
print(" ESC - Exit")
|
||||
print(" SPACE - Clear prediction buffer")
|
||||
print(" 'h' - Toggle hand landmarks visibility")
|
||||
print("=" * 60 + "\n")
|
||||
|
||||
show_landmarks = True
|
||||
|
||||
with torch.no_grad():
|
||||
while True:
|
||||
success, image = cap.read()
|
||||
if not success:
|
||||
print("Failed to read frame from webcam")
|
||||
break
|
||||
|
||||
# Flip image horizontally for mirror view
|
||||
image = cv2.flip(image, 1)
|
||||
|
||||
# Convert to MediaPipe format
|
||||
mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=image)
|
||||
|
||||
# Detect hands
|
||||
results = landmarker.detect_for_video(mp_image, frame_count)
|
||||
frame_count += 1
|
||||
|
||||
# Calculate FPS
|
||||
fps_counter += 1
|
||||
if fps_counter >= 30:
|
||||
fps_end_time = cv2.getTickCount()
|
||||
time_diff = (fps_end_time - fps_start_time) / cv2.getTickFrequency()
|
||||
current_fps = fps_counter / time_diff
|
||||
fps_counter = 0
|
||||
fps_start_time = cv2.getTickCount()
|
||||
|
||||
# Process hand landmarks if detected
|
||||
if results.hand_landmarks and len(results.hand_landmarks) > 0:
|
||||
hand_landmarks = results.hand_landmarks[0]
|
||||
|
||||
# Draw hand landmarks if enabled
|
||||
if show_landmarks:
|
||||
# Draw connections
|
||||
connections = [
|
||||
(0, 1), (1, 2), (2, 3), (3, 4), # Thumb
|
||||
(0, 5), (5, 6), (6, 7), (7, 8), # Index
|
||||
(0, 9), (9, 10), (10, 11), (11, 12), # Middle
|
||||
(0, 13), (13, 14), (14, 15), (15, 16), # Ring
|
||||
(0, 17), (17, 18), (18, 19), (19, 20), # Pinky
|
||||
(5, 9), (9, 13), (13, 17) # Palm
|
||||
]
|
||||
|
||||
# Get image dimensions
|
||||
h, w = image.shape[:2]
|
||||
|
||||
# Draw connections
|
||||
for connection in connections:
|
||||
start_idx, end_idx = connection
|
||||
start = hand_landmarks[start_idx]
|
||||
end = hand_landmarks[end_idx]
|
||||
|
||||
start_point = (int(start.x * w), int(start.y * h))
|
||||
end_point = (int(end.x * w), int(end.y * h))
|
||||
|
||||
cv2.line(image, start_point, end_point, (0, 255, 0), 2)
|
||||
|
||||
# Draw landmarks
|
||||
for i, landmark in enumerate(hand_landmarks):
|
||||
x = int(landmark.x * w)
|
||||
y = int(landmark.y * h)
|
||||
|
||||
# Different colors for different parts
|
||||
if i == 0: # Wrist
|
||||
color = (255, 0, 0)
|
||||
radius = 8
|
||||
elif i in [4, 8, 12, 16, 20]: # Fingertips
|
||||
color = (0, 0, 255)
|
||||
radius = 6
|
||||
else:
|
||||
color = (0, 255, 0)
|
||||
radius = 4
|
||||
|
||||
cv2.circle(image, (x, y), radius, color, -1)
|
||||
cv2.circle(image, (x, y), radius + 2, (255, 255, 255), 1)
|
||||
|
||||
# Extract features
|
||||
features = get_optimized_features(hand_landmarks)
|
||||
|
||||
# Make prediction
|
||||
input_tensor = torch.FloatTensor(features).unsqueeze(0)
|
||||
output = model(input_tensor)
|
||||
probabilities = torch.softmax(output, dim=1)[0]
|
||||
|
||||
# Get top prediction
|
||||
predicted_idx = torch.argmax(probabilities).item()
|
||||
confidence = probabilities[predicted_idx].item()
|
||||
predicted_sign = label_encoder.inverse_transform([predicted_idx])[0]
|
||||
|
||||
# Add to buffer for smoothing
|
||||
if confidence > 0.3: # Only add if confident enough
|
||||
prediction_buffer.append(predicted_sign)
|
||||
|
||||
# Get smoothed prediction (most common in buffer)
|
||||
if len(prediction_buffer) >= 5:
|
||||
from collections import Counter
|
||||
|
||||
smoothed_sign = Counter(prediction_buffer).most_common(1)[0][0]
|
||||
else:
|
||||
smoothed_sign = predicted_sign
|
||||
|
||||
# Get top 5 predictions
|
||||
top5_prob, top5_idx = torch.topk(probabilities, min(5, num_classes))
|
||||
|
||||
# Display prediction area (dark semi-transparent overlay)
|
||||
overlay = image.copy()
|
||||
cv2.rectangle(overlay, (10, 10), (500, 280), (0, 0, 0), -1)
|
||||
cv2.addWeighted(overlay, 0.7, image, 0.3, 0, image)
|
||||
|
||||
# Display main prediction
|
||||
cv2.putText(image, f"Sign: {smoothed_sign}",
|
||||
(20, 50), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (0, 255, 0), 3)
|
||||
cv2.putText(image, f"Confidence: {confidence:.1%}",
|
||||
(20, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2)
|
||||
|
||||
# Display top 5 predictions
|
||||
cv2.putText(image, "Top 5:",
|
||||
(20, 130), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
|
||||
|
||||
y_offset = 160
|
||||
for i, (prob, idx) in enumerate(zip(top5_prob, top5_idx)):
|
||||
sign = label_encoder.inverse_transform([idx.item()])[0]
|
||||
prob_val = prob.item()
|
||||
|
||||
# Color code by confidence
|
||||
if i == 0:
|
||||
color = (0, 255, 0) # Green for top
|
||||
elif prob_val > 0.1:
|
||||
color = (0, 255, 255) # Yellow for decent confidence
|
||||
else:
|
||||
color = (128, 128, 128) # Gray for low confidence
|
||||
|
||||
cv2.putText(image, f"{i + 1}. {sign}: {prob_val:.1%}",
|
||||
(30, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
|
||||
y_offset += 30
|
||||
else:
|
||||
# No hand detected
|
||||
cv2.putText(image, "No hand detected",
|
||||
(20, 50), cv2.FONT_HERSHEY_SIMPLEX, 1.2, (0, 0, 255), 2)
|
||||
prediction_buffer.clear()
|
||||
|
||||
# Display FPS and info
|
||||
info_y = image.shape[0] - 60
|
||||
cv2.putText(image, f"FPS: {current_fps:.1f}",
|
||||
(20, info_y), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
||||
cv2.putText(image, f"Frame: {frame_count}",
|
||||
(20, info_y + 25), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
||||
|
||||
# Display controls at bottom right
|
||||
controls_text = "ESC: Exit | SPACE: Clear | H: Landmarks"
|
||||
text_size = cv2.getTextSize(controls_text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)[0]
|
||||
cv2.putText(image, controls_text,
|
||||
(image.shape[1] - text_size[0] - 10, image.shape[0] - 10),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (200, 200, 200), 1)
|
||||
|
||||
# Show the image
|
||||
cv2.imshow('ASL Recognition - Transformer+CNN', image)
|
||||
|
||||
# Handle key presses
|
||||
key = cv2.waitKey(1) & 0xFF
|
||||
|
||||
if key == 27: # ESC
|
||||
print("Exiting...")
|
||||
break
|
||||
elif key == 32: # SPACE
|
||||
prediction_buffer.clear()
|
||||
print("Prediction buffer cleared")
|
||||
elif key == ord('h') or key == ord('H'):
|
||||
show_landmarks = not show_landmarks
|
||||
print(f"Hand landmarks: {'ON' if show_landmarks else 'OFF'}")
|
||||
|
||||
# Cleanup
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
print("Recognition stopped.")
|
||||
500
training.py
Normal file
500
training.py
Normal file
@@ -0,0 +1,500 @@
|
||||
import mediapipe as mp
|
||||
import numpy as np
|
||||
import os
|
||||
import pandas as pd
|
||||
import json
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
import pickle
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
import torch.nn.functional as F
|
||||
import math
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
# Load the dataset
|
||||
def load_kaggle_asl_data(base_path='asl_kaggle'):
|
||||
"""
|
||||
Load data from Kaggle ASL dataset format
|
||||
base_path should contain:
|
||||
- train.csv
|
||||
- train_landmark_files/ directory
|
||||
- sign_to_prediction_index_map.json
|
||||
"""
|
||||
|
||||
# Load train.csv
|
||||
train_df = pd.read_csv(os.path.join(base_path, 'train.csv'))
|
||||
|
||||
# Load sign mapping
|
||||
with open(os.path.join(base_path, 'sign_to_prediction_index_map.json'), 'r') as f:
|
||||
sign_to_idx = json.load(f)
|
||||
|
||||
print(f"Total sequences: {len(train_df)}")
|
||||
print(f"Unique signs: {len(sign_to_idx)}")
|
||||
print(f"Signs: {list(sign_to_idx.keys())[:10]}...") # Show first 10
|
||||
|
||||
return train_df, sign_to_idx
|
||||
|
||||
|
||||
def extract_hand_landmarks_from_parquet(parquet_path):
|
||||
"""
|
||||
Extract hand landmarks from a parquet file
|
||||
The file contains landmarks for face, left_hand, pose, right_hand
|
||||
We only care about hand landmarks
|
||||
"""
|
||||
df = pd.read_parquet(parquet_path)
|
||||
|
||||
# Filter for hand landmarks only (left_hand or right_hand)
|
||||
# For ASL, we'll use whichever hand is dominant in the sequence
|
||||
left_hand = df[df['type'] == 'left_hand']
|
||||
right_hand = df[df['type'] == 'right_hand']
|
||||
|
||||
# Use the hand with more detected landmarks
|
||||
if len(left_hand) > len(right_hand):
|
||||
hand_df = left_hand
|
||||
elif len(right_hand) > 0:
|
||||
hand_df = right_hand
|
||||
else:
|
||||
return None # No hand detected
|
||||
|
||||
# Get unique frames
|
||||
frames = hand_df['frame'].unique()
|
||||
|
||||
# We'll use the middle frame (most stable) or average across frames
|
||||
# For now, let's average the landmarks across all frames
|
||||
landmarks_list = []
|
||||
|
||||
for landmark_idx in range(21): # MediaPipe has 21 hand landmarks
|
||||
landmark_data = hand_df[hand_df['landmark_index'] == landmark_idx]
|
||||
|
||||
if len(landmark_data) == 0:
|
||||
# Missing landmark, use zeros
|
||||
landmarks_list.append([0.0, 0.0, 0.0])
|
||||
else:
|
||||
# Average across frames
|
||||
x = landmark_data['x'].mean()
|
||||
y = landmark_data['y'].mean()
|
||||
z = landmark_data['z'].mean()
|
||||
landmarks_list.append([x, y, z])
|
||||
|
||||
return np.array(landmarks_list, dtype=np.float32)
|
||||
|
||||
|
||||
def get_optimized_features(landmarks_array):
|
||||
"""
|
||||
Extract optimally normalized relative coordinates from landmark array
|
||||
landmarks_array: (21, 3) numpy array
|
||||
Returns 77 features
|
||||
"""
|
||||
if landmarks_array is None:
|
||||
return None
|
||||
|
||||
points = landmarks_array.copy()
|
||||
|
||||
# Translation invariance
|
||||
wrist = points[0].copy()
|
||||
points_centered = points - wrist
|
||||
|
||||
# Scale invariance
|
||||
palm_size = np.linalg.norm(points[9] - points[0])
|
||||
if palm_size < 1e-6:
|
||||
palm_size = 1.0
|
||||
points_normalized = points_centered / palm_size
|
||||
|
||||
# Standardization
|
||||
mean = np.mean(points_normalized, axis=0)
|
||||
std = np.std(points_normalized, axis=0) + 1e-8
|
||||
points_standardized = (points_normalized - mean) / std
|
||||
|
||||
features = points_standardized.flatten()
|
||||
|
||||
# Derived features
|
||||
finger_tips = [4, 8, 12, 16, 20]
|
||||
|
||||
tip_distances = []
|
||||
for i in range(len(finger_tips) - 1):
|
||||
dist = np.linalg.norm(points_normalized[finger_tips[i]] - points_normalized[finger_tips[i + 1]])
|
||||
tip_distances.append(dist)
|
||||
|
||||
palm_center = np.mean(points_normalized[[0, 5, 9, 13, 17]], axis=0)
|
||||
tip_to_palm = []
|
||||
for tip in finger_tips:
|
||||
dist = np.linalg.norm(points_normalized[tip] - palm_center)
|
||||
tip_to_palm.append(dist)
|
||||
|
||||
finger_curls = []
|
||||
finger_bases = [1, 5, 9, 13, 17]
|
||||
for base, tip in zip(finger_bases, finger_tips):
|
||||
curl = np.linalg.norm(points_normalized[tip] - points_normalized[base])
|
||||
finger_curls.append(curl)
|
||||
|
||||
all_features = np.concatenate([
|
||||
features,
|
||||
tip_distances,
|
||||
tip_to_palm,
|
||||
finger_curls
|
||||
])
|
||||
|
||||
return all_features.astype(np.float32)
|
||||
|
||||
|
||||
# Load dataset
|
||||
print("Loading Kaggle ASL dataset...")
|
||||
base_path = 'asl_kaggle' # Change this to your dataset path
|
||||
train_df, sign_to_idx = load_kaggle_asl_data(base_path)
|
||||
|
||||
# Process landmarks
|
||||
X = []
|
||||
y = []
|
||||
|
||||
print("\nProcessing landmark files...")
|
||||
for idx, row in train_df.iterrows():
|
||||
if idx % 1000 == 0:
|
||||
print(f"Processed {idx}/{len(train_df)} sequences...")
|
||||
|
||||
# Construct full path
|
||||
parquet_path = os.path.join(base_path, row['path'])
|
||||
|
||||
if not os.path.exists(parquet_path):
|
||||
continue
|
||||
|
||||
# Extract landmarks
|
||||
landmarks = extract_hand_landmarks_from_parquet(parquet_path)
|
||||
|
||||
if landmarks is None:
|
||||
continue
|
||||
|
||||
# Get features
|
||||
features = get_optimized_features(landmarks)
|
||||
|
||||
if features is None:
|
||||
continue
|
||||
|
||||
X.append(features)
|
||||
y.append(row['sign'])
|
||||
|
||||
print(f"\nSuccessfully processed {len(X)} sequences")
|
||||
|
||||
if len(X) == 0:
|
||||
print("ERROR: No valid sequences found! Check your dataset path.")
|
||||
exit()
|
||||
|
||||
X = np.array(X, dtype=np.float32)
|
||||
y = np.array(y)
|
||||
|
||||
print(f"Feature vector size: {X.shape[1]} dimensions")
|
||||
|
||||
# Clean data
|
||||
if np.isnan(X).any():
|
||||
print("WARNING: NaN values detected, removing affected samples...")
|
||||
mask = ~np.isnan(X).any(axis=1)
|
||||
X = X[mask]
|
||||
y = y[mask]
|
||||
|
||||
if np.isinf(X).any():
|
||||
print("WARNING: Inf values detected, removing affected samples...")
|
||||
mask = ~np.isinf(X).any(axis=1)
|
||||
X = X[mask]
|
||||
y = y[mask]
|
||||
|
||||
# Encode labels using the provided mapping
|
||||
label_encoder = LabelEncoder()
|
||||
y_encoded = label_encoder.fit_transform(y)
|
||||
num_classes = len(label_encoder.classes_)
|
||||
|
||||
print(f"\nNumber of classes: {num_classes}")
|
||||
print(f"Sample classes: {label_encoder.classes_[:20]}...")
|
||||
|
||||
# Split data
|
||||
X_train, X_test, y_train, y_test = train_test_split(
|
||||
X, y_encoded, test_size=0.2, random_state=42, stratify=y_encoded
|
||||
)
|
||||
|
||||
|
||||
# PyTorch Dataset
|
||||
class ASLDataset(Dataset):
|
||||
def __init__(self, X, y):
|
||||
self.X = torch.FloatTensor(X)
|
||||
self.y = torch.LongTensor(y)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.X)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return self.X[idx], self.y[idx]
|
||||
|
||||
|
||||
train_dataset = ASLDataset(X_train, y_train)
|
||||
test_dataset = ASLDataset(X_test, y_test)
|
||||
|
||||
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4)
|
||||
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False, num_workers=4)
|
||||
|
||||
|
||||
# Positional Encoding for Transformer
|
||||
class PositionalEncoding(nn.Module):
|
||||
def __init__(self, d_model, max_len=100):
|
||||
super(PositionalEncoding, self).__init__()
|
||||
|
||||
pe = torch.zeros(max_len, d_model)
|
||||
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
||||
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
||||
|
||||
pe[:, 0::2] = torch.sin(position * div_term)
|
||||
pe[:, 1::2] = torch.cos(position * div_term)
|
||||
|
||||
pe = pe.unsqueeze(0)
|
||||
self.register_buffer('pe', pe)
|
||||
|
||||
def forward(self, x):
|
||||
return x + self.pe[:, :x.size(1), :]
|
||||
|
||||
|
||||
# Multi-Head Self-Attention Transformer + CNN Hybrid
|
||||
class TransformerCNN_ASL(nn.Module):
|
||||
def __init__(self, input_dim=77, num_classes=250, d_model=512, nhead=8, num_layers=6, dim_feedforward=2048):
|
||||
super(TransformerCNN_ASL, self).__init__()
|
||||
|
||||
self.input_dim = input_dim
|
||||
self.d_model = d_model
|
||||
|
||||
# Input projection
|
||||
self.input_projection = nn.Linear(input_dim, d_model)
|
||||
self.input_norm = nn.LayerNorm(d_model)
|
||||
|
||||
# Positional encoding
|
||||
self.pos_encoder = PositionalEncoding(d_model, max_len=100)
|
||||
|
||||
# Transformer Encoder with Self-Attention
|
||||
encoder_layer = nn.TransformerEncoderLayer(
|
||||
d_model=d_model,
|
||||
nhead=nhead,
|
||||
dim_feedforward=dim_feedforward,
|
||||
dropout=0.1,
|
||||
activation='gelu',
|
||||
batch_first=True,
|
||||
norm_first=True
|
||||
)
|
||||
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
||||
|
||||
# CNN Blocks for pattern detection
|
||||
self.conv1 = nn.Conv1d(d_model, 1024, kernel_size=3, padding=1)
|
||||
self.bn1 = nn.BatchNorm1d(1024)
|
||||
self.pool1 = nn.MaxPool1d(2)
|
||||
self.dropout1 = nn.Dropout(0.3)
|
||||
|
||||
self.conv2 = nn.Conv1d(1024, 2048, kernel_size=3, padding=1)
|
||||
self.bn2 = nn.BatchNorm1d(2048)
|
||||
self.pool2 = nn.MaxPool1d(2)
|
||||
self.dropout2 = nn.Dropout(0.3)
|
||||
|
||||
self.conv3 = nn.Conv1d(2048, 4096, kernel_size=3, padding=1)
|
||||
self.bn3 = nn.BatchNorm1d(4096)
|
||||
self.pool3 = nn.AdaptiveMaxPool1d(1) # Global pooling
|
||||
self.dropout3 = nn.Dropout(0.4)
|
||||
|
||||
# Fully connected layers
|
||||
self.fc1 = nn.Linear(4096, 4096)
|
||||
self.bn_fc1 = nn.BatchNorm1d(4096)
|
||||
self.dropout_fc1 = nn.Dropout(0.5)
|
||||
|
||||
self.fc2 = nn.Linear(4096, 2048)
|
||||
self.bn_fc2 = nn.BatchNorm1d(2048)
|
||||
self.dropout_fc2 = nn.Dropout(0.4)
|
||||
|
||||
self.fc3 = nn.Linear(2048, 1024)
|
||||
self.bn_fc3 = nn.BatchNorm1d(1024)
|
||||
self.dropout_fc3 = nn.Dropout(0.3)
|
||||
|
||||
self.fc4 = nn.Linear(1024, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
batch_size = x.size(0)
|
||||
|
||||
# Project to d_model
|
||||
x = self.input_projection(x)
|
||||
x = self.input_norm(x)
|
||||
x = x.unsqueeze(1)
|
||||
|
||||
# Add positional encoding
|
||||
x = self.pos_encoder(x)
|
||||
|
||||
# Transformer encoder with self-attention
|
||||
x = self.transformer_encoder(x)
|
||||
|
||||
# Reshape for CNN
|
||||
x = x.permute(0, 2, 1)
|
||||
|
||||
# CNN pattern detection
|
||||
x = F.gelu(self.bn1(self.conv1(x)))
|
||||
x = self.pool1(x)
|
||||
x = self.dropout1(x)
|
||||
|
||||
x = F.gelu(self.bn2(self.conv2(x)))
|
||||
x = self.pool2(x)
|
||||
x = self.dropout2(x)
|
||||
|
||||
x = F.gelu(self.bn3(self.conv3(x)))
|
||||
x = self.pool3(x)
|
||||
x = self.dropout3(x)
|
||||
|
||||
# Flatten
|
||||
x = x.view(batch_size, -1)
|
||||
|
||||
# Fully connected layers
|
||||
x = F.gelu(self.bn_fc1(self.fc1(x)))
|
||||
x = self.dropout_fc1(x)
|
||||
|
||||
x = F.gelu(self.bn_fc2(self.fc2(x)))
|
||||
x = self.dropout_fc2(x)
|
||||
|
||||
x = F.gelu(self.bn_fc3(self.fc3(x)))
|
||||
x = self.dropout_fc3(x)
|
||||
|
||||
x = self.fc4(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
# Initialize model
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
print(f"\nUsing device: {device}")
|
||||
|
||||
model = TransformerCNN_ASL(
|
||||
input_dim=X.shape[1],
|
||||
num_classes=num_classes,
|
||||
d_model=512,
|
||||
nhead=8,
|
||||
num_layers=6,
|
||||
dim_feedforward=2048
|
||||
).to(device)
|
||||
|
||||
# Count parameters
|
||||
total_params = sum(p.numel() for p in model.parameters())
|
||||
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||||
print(f"Total parameters: {total_params:,}")
|
||||
print(f"Trainable parameters: {trainable_params:,}")
|
||||
|
||||
if total_params > 50_000_000:
|
||||
print(f"WARNING: Model has {total_params:,} parameters, exceeding 50M limit!")
|
||||
else:
|
||||
print(f"Model is within 50M parameter limit ✓")
|
||||
|
||||
# Loss and optimizer
|
||||
criterion = nn.CrossEntropyLoss(label_smoothing=0.1)
|
||||
optimizer = optim.AdamW(model.parameters(), lr=0.001, weight_decay=1e-4)
|
||||
|
||||
# Cosine annealing learning rate scheduler
|
||||
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10, T_mult=2)
|
||||
|
||||
|
||||
# Training function
|
||||
def train_epoch(model, loader, criterion, optimizer, device):
|
||||
model.train()
|
||||
total_loss = 0
|
||||
correct = 0
|
||||
total = 0
|
||||
|
||||
for X_batch, y_batch in loader:
|
||||
X_batch, y_batch = X_batch.to(device), y_batch.to(device)
|
||||
|
||||
optimizer.zero_grad()
|
||||
outputs = model(X_batch)
|
||||
loss = criterion(outputs, y_batch)
|
||||
loss.backward()
|
||||
|
||||
# Gradient clipping
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
|
||||
|
||||
optimizer.step()
|
||||
|
||||
total_loss += loss.item()
|
||||
_, predicted = outputs.max(1)
|
||||
total += y_batch.size(0)
|
||||
correct += predicted.eq(y_batch).sum().item()
|
||||
|
||||
return total_loss / len(loader), 100. * correct / total
|
||||
|
||||
|
||||
# Evaluation function
|
||||
def evaluate(model, loader, device):
|
||||
model.eval()
|
||||
correct = 0
|
||||
total = 0
|
||||
|
||||
with torch.no_grad():
|
||||
for X_batch, y_batch in loader:
|
||||
X_batch, y_batch = X_batch.to(device), y_batch.to(device)
|
||||
outputs = model(X_batch)
|
||||
_, predicted = outputs.max(1)
|
||||
total += y_batch.size(0)
|
||||
correct += predicted.eq(y_batch).sum().item()
|
||||
|
||||
return 100. * correct / total
|
||||
|
||||
|
||||
# Dynamic epoch calculation
|
||||
def calculate_epochs(dataset_size):
|
||||
if dataset_size < 1000:
|
||||
return 200
|
||||
elif dataset_size < 5000:
|
||||
return 150
|
||||
elif dataset_size < 10000:
|
||||
return 100
|
||||
elif dataset_size < 50000:
|
||||
return 75
|
||||
else:
|
||||
return 50
|
||||
|
||||
|
||||
num_epochs = calculate_epochs(len(X_train))
|
||||
print(f"\nDynamic epoch calculation: {num_epochs} epochs for {len(X_train)} training samples")
|
||||
|
||||
# Early stopping
|
||||
patience = 20
|
||||
best_acc = 0
|
||||
patience_counter = 0
|
||||
|
||||
print("\nStarting training with Transformer + CNN architecture...")
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
train_loss, train_acc = train_epoch(model, train_loader, criterion, optimizer, device)
|
||||
test_acc = evaluate(model, test_loader, device)
|
||||
|
||||
scheduler.step()
|
||||
|
||||
if test_acc > best_acc:
|
||||
best_acc = test_acc
|
||||
patience_counter = 0
|
||||
# Save best model
|
||||
torch.save({
|
||||
'model_state_dict': model.state_dict(),
|
||||
'label_encoder': label_encoder,
|
||||
'num_classes': num_classes,
|
||||
'input_dim': X.shape[1],
|
||||
'sign_to_idx': sign_to_idx,
|
||||
'model_config': {
|
||||
'd_model': 512,
|
||||
'nhead': 8,
|
||||
'num_layers': 6,
|
||||
'dim_feedforward': 2048
|
||||
}
|
||||
}, 'asl_kaggle_transformer.pth')
|
||||
else:
|
||||
patience_counter += 1
|
||||
|
||||
if (epoch + 1) % 5 == 0:
|
||||
current_lr = optimizer.param_groups[0]['lr']
|
||||
print(
|
||||
f"Epoch {epoch + 1}/{num_epochs} | Loss: {train_loss:.4f} | Train: {train_acc:.2f}% | Test: {test_acc:.2f}% | Best: {best_acc:.2f}% | LR: {current_lr:.6f}")
|
||||
|
||||
# Early stopping
|
||||
if patience_counter >= patience:
|
||||
print(f"\nEarly stopping triggered at epoch {epoch + 1}")
|
||||
break
|
||||
|
||||
print(f"\nTraining complete! Best test accuracy: {best_acc:.2f}%")
|
||||
print("Model saved to asl_kaggle_transformer.pth")
|
||||
Reference in New Issue
Block a user