Initial Commit
This commit is contained in:
443
test.py
Normal file
443
test.py
Normal file
@@ -0,0 +1,443 @@
|
||||
import mediapipe as mp
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import math
|
||||
|
||||
|
||||
# Positional Encoding
|
||||
class PositionalEncoding(nn.Module):
|
||||
def __init__(self, d_model, max_len=100):
|
||||
super(PositionalEncoding, self).__init__()
|
||||
|
||||
pe = torch.zeros(max_len, d_model)
|
||||
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
||||
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
||||
|
||||
pe[:, 0::2] = torch.sin(position * div_term)
|
||||
pe[:, 1::2] = torch.cos(position * div_term)
|
||||
|
||||
pe = pe.unsqueeze(0)
|
||||
self.register_buffer('pe', pe)
|
||||
|
||||
def forward(self, x):
|
||||
return x + self.pe[:, :x.size(1), :]
|
||||
|
||||
|
||||
# Model architecture
|
||||
class TransformerCNN_ASL(nn.Module):
|
||||
def __init__(self, input_dim=77, num_classes=250, d_model=512, nhead=8, num_layers=6, dim_feedforward=2048):
|
||||
super(TransformerCNN_ASL, self).__init__()
|
||||
|
||||
self.input_dim = input_dim
|
||||
self.d_model = d_model
|
||||
|
||||
# Input projection
|
||||
self.input_projection = nn.Linear(input_dim, d_model)
|
||||
self.input_norm = nn.LayerNorm(d_model)
|
||||
|
||||
# Positional encoding
|
||||
self.pos_encoder = PositionalEncoding(d_model, max_len=100)
|
||||
|
||||
# Transformer Encoder with Self-Attention
|
||||
encoder_layer = nn.TransformerEncoderLayer(
|
||||
d_model=d_model,
|
||||
nhead=nhead,
|
||||
dim_feedforward=dim_feedforward,
|
||||
dropout=0.1,
|
||||
activation='gelu',
|
||||
batch_first=True,
|
||||
norm_first=True
|
||||
)
|
||||
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
||||
|
||||
# CNN Blocks for pattern detection
|
||||
self.conv1 = nn.Conv1d(d_model, 1024, kernel_size=3, padding=1)
|
||||
self.bn1 = nn.BatchNorm1d(1024)
|
||||
self.pool1 = nn.MaxPool1d(2)
|
||||
self.dropout1 = nn.Dropout(0.3)
|
||||
|
||||
self.conv2 = nn.Conv1d(1024, 2048, kernel_size=3, padding=1)
|
||||
self.bn2 = nn.BatchNorm1d(2048)
|
||||
self.pool2 = nn.MaxPool1d(2)
|
||||
self.dropout2 = nn.Dropout(0.3)
|
||||
|
||||
self.conv3 = nn.Conv1d(2048, 4096, kernel_size=3, padding=1)
|
||||
self.bn3 = nn.BatchNorm1d(4096)
|
||||
self.pool3 = nn.AdaptiveMaxPool1d(1) # Global pooling
|
||||
self.dropout3 = nn.Dropout(0.4)
|
||||
|
||||
# Fully connected layers
|
||||
self.fc1 = nn.Linear(4096, 4096)
|
||||
self.bn_fc1 = nn.BatchNorm1d(4096)
|
||||
self.dropout_fc1 = nn.Dropout(0.5)
|
||||
|
||||
self.fc2 = nn.Linear(4096, 2048)
|
||||
self.bn_fc2 = nn.BatchNorm1d(2048)
|
||||
self.dropout_fc2 = nn.Dropout(0.4)
|
||||
|
||||
self.fc3 = nn.Linear(2048, 1024)
|
||||
self.bn_fc3 = nn.BatchNorm1d(1024)
|
||||
self.dropout_fc3 = nn.Dropout(0.3)
|
||||
|
||||
self.fc4 = nn.Linear(1024, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
batch_size = x.size(0)
|
||||
|
||||
# Project to d_model
|
||||
x = self.input_projection(x)
|
||||
x = self.input_norm(x)
|
||||
x = x.unsqueeze(1)
|
||||
|
||||
# Add positional encoding
|
||||
x = self.pos_encoder(x)
|
||||
|
||||
# Transformer encoder with self-attention
|
||||
x = self.transformer_encoder(x)
|
||||
|
||||
# Reshape for CNN
|
||||
x = x.permute(0, 2, 1)
|
||||
|
||||
# CNN pattern detection
|
||||
x = F.gelu(self.bn1(self.conv1(x)))
|
||||
x = self.pool1(x)
|
||||
x = self.dropout1(x)
|
||||
|
||||
x = F.gelu(self.bn2(self.conv2(x)))
|
||||
x = self.pool2(x)
|
||||
x = self.dropout2(x)
|
||||
|
||||
x = F.gelu(self.bn3(self.conv3(x)))
|
||||
x = self.pool3(x)
|
||||
x = self.dropout3(x)
|
||||
|
||||
# Flatten
|
||||
x = x.view(batch_size, -1)
|
||||
|
||||
# Fully connected layers
|
||||
x = F.gelu(self.bn_fc1(self.fc1(x)))
|
||||
x = self.dropout_fc1(x)
|
||||
|
||||
x = F.gelu(self.bn_fc2(self.fc2(x)))
|
||||
x = self.dropout_fc2(x)
|
||||
|
||||
x = F.gelu(self.bn_fc3(self.fc3(x)))
|
||||
x = self.dropout_fc3(x)
|
||||
|
||||
x = self.fc4(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
# Load the trained model
|
||||
print("Loading model...")
|
||||
checkpoint = torch.load('asl_kaggle_transformer.pth', map_location='cpu')
|
||||
label_encoder = checkpoint['label_encoder']
|
||||
num_classes = checkpoint['num_classes']
|
||||
input_dim = checkpoint['input_dim']
|
||||
config = checkpoint['model_config']
|
||||
|
||||
model = TransformerCNN_ASL(
|
||||
input_dim=input_dim,
|
||||
num_classes=num_classes,
|
||||
d_model=config['d_model'],
|
||||
nhead=config['nhead'],
|
||||
num_layers=config['num_layers'],
|
||||
dim_feedforward=config['dim_feedforward']
|
||||
)
|
||||
model.load_state_dict(checkpoint['model_state_dict'])
|
||||
model.eval()
|
||||
|
||||
total_params = sum(p.numel() for p in model.parameters())
|
||||
print(f"Loaded Transformer+CNN model")
|
||||
print(f"Total parameters: {total_params:,}")
|
||||
print(f"Number of ASL signs: {num_classes}")
|
||||
print(f"Sample signs: {label_encoder.classes_[:10]}")
|
||||
|
||||
# Setup MediaPipe
|
||||
BaseOptions = mp.tasks.BaseOptions
|
||||
HandLandmarker = mp.tasks.vision.HandLandmarker
|
||||
HandLandmarkerOptions = mp.tasks.vision.HandLandmarkerOptions
|
||||
VisionRunningMode = mp.tasks.vision.RunningMode
|
||||
|
||||
options = HandLandmarkerOptions(
|
||||
base_options=BaseOptions(model_asset_path='hand_landmarker.task'),
|
||||
running_mode=VisionRunningMode.VIDEO,
|
||||
num_hands=1,
|
||||
min_hand_detection_confidence=0.5,
|
||||
min_hand_presence_confidence=0.5,
|
||||
min_tracking_confidence=0.5
|
||||
)
|
||||
|
||||
landmarker = HandLandmarker.create_from_options(options)
|
||||
|
||||
|
||||
def get_optimized_features(hand_landmarks):
|
||||
"""
|
||||
Extract optimally normalized relative coordinates from MediaPipe landmarks
|
||||
Returns 77 features
|
||||
"""
|
||||
# Extract raw coordinates
|
||||
points = np.array([[lm.x, lm.y, lm.z] for lm in hand_landmarks], dtype=np.float32)
|
||||
|
||||
# Step 1: Translation invariance - center on wrist
|
||||
wrist = points[0].copy()
|
||||
points_centered = points - wrist
|
||||
|
||||
# Step 2: Scale invariance - normalize by palm size
|
||||
palm_size = np.linalg.norm(points[9] - points[0]) # wrist to middle finger base
|
||||
if palm_size < 1e-6:
|
||||
palm_size = 1.0
|
||||
points_normalized = points_centered / palm_size
|
||||
|
||||
# Step 3: Standardization
|
||||
mean = np.mean(points_normalized, axis=0)
|
||||
std = np.std(points_normalized, axis=0) + 1e-8
|
||||
points_standardized = (points_normalized - mean) / std
|
||||
|
||||
# Flatten base features (63 features)
|
||||
features = points_standardized.flatten()
|
||||
|
||||
# Step 4: Derived features
|
||||
finger_tips = [4, 8, 12, 16, 20] # Thumb, Index, Middle, Ring, Pinky
|
||||
|
||||
# Distances between consecutive fingertips (4 distances)
|
||||
tip_distances = []
|
||||
for i in range(len(finger_tips) - 1):
|
||||
dist = np.linalg.norm(points_normalized[finger_tips[i]] - points_normalized[finger_tips[i + 1]])
|
||||
tip_distances.append(dist)
|
||||
|
||||
# Distance of each fingertip from palm center (5 distances)
|
||||
palm_center = np.mean(points_normalized[[0, 5, 9, 13, 17]], axis=0)
|
||||
tip_to_palm = []
|
||||
for tip in finger_tips:
|
||||
dist = np.linalg.norm(points_normalized[tip] - palm_center)
|
||||
tip_to_palm.append(dist)
|
||||
|
||||
# Finger curl indicators (5 curls)
|
||||
finger_curls = []
|
||||
finger_bases = [1, 5, 9, 13, 17]
|
||||
for base, tip in zip(finger_bases, finger_tips):
|
||||
curl = np.linalg.norm(points_normalized[tip] - points_normalized[base])
|
||||
finger_curls.append(curl)
|
||||
|
||||
# Combine all features: 63 + 4 + 5 + 5 = 77
|
||||
all_features = np.concatenate([
|
||||
features,
|
||||
tip_distances,
|
||||
tip_to_palm,
|
||||
finger_curls
|
||||
])
|
||||
|
||||
return all_features.astype(np.float32)
|
||||
|
||||
|
||||
# Initialize webcam
|
||||
cap = cv2.VideoCapture(0)
|
||||
|
||||
if not cap.isOpened():
|
||||
print("Error: Cannot open webcam")
|
||||
exit()
|
||||
|
||||
# Set camera resolution for better performance
|
||||
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
|
||||
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
|
||||
|
||||
frame_count = 0
|
||||
fps_counter = 0
|
||||
fps_start_time = cv2.getTickCount()
|
||||
current_fps = 0
|
||||
|
||||
# Prediction smoothing buffer
|
||||
from collections import deque
|
||||
|
||||
prediction_buffer = deque(maxlen=10)
|
||||
|
||||
print("\n" + "=" * 60)
|
||||
print("ASL Recognition - Transformer+CNN Model")
|
||||
print("=" * 60)
|
||||
print("Controls:")
|
||||
print(" ESC - Exit")
|
||||
print(" SPACE - Clear prediction buffer")
|
||||
print(" 'h' - Toggle hand landmarks visibility")
|
||||
print("=" * 60 + "\n")
|
||||
|
||||
show_landmarks = True
|
||||
|
||||
with torch.no_grad():
|
||||
while True:
|
||||
success, image = cap.read()
|
||||
if not success:
|
||||
print("Failed to read frame from webcam")
|
||||
break
|
||||
|
||||
# Flip image horizontally for mirror view
|
||||
image = cv2.flip(image, 1)
|
||||
|
||||
# Convert to MediaPipe format
|
||||
mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=image)
|
||||
|
||||
# Detect hands
|
||||
results = landmarker.detect_for_video(mp_image, frame_count)
|
||||
frame_count += 1
|
||||
|
||||
# Calculate FPS
|
||||
fps_counter += 1
|
||||
if fps_counter >= 30:
|
||||
fps_end_time = cv2.getTickCount()
|
||||
time_diff = (fps_end_time - fps_start_time) / cv2.getTickFrequency()
|
||||
current_fps = fps_counter / time_diff
|
||||
fps_counter = 0
|
||||
fps_start_time = cv2.getTickCount()
|
||||
|
||||
# Process hand landmarks if detected
|
||||
if results.hand_landmarks and len(results.hand_landmarks) > 0:
|
||||
hand_landmarks = results.hand_landmarks[0]
|
||||
|
||||
# Draw hand landmarks if enabled
|
||||
if show_landmarks:
|
||||
# Draw connections
|
||||
connections = [
|
||||
(0, 1), (1, 2), (2, 3), (3, 4), # Thumb
|
||||
(0, 5), (5, 6), (6, 7), (7, 8), # Index
|
||||
(0, 9), (9, 10), (10, 11), (11, 12), # Middle
|
||||
(0, 13), (13, 14), (14, 15), (15, 16), # Ring
|
||||
(0, 17), (17, 18), (18, 19), (19, 20), # Pinky
|
||||
(5, 9), (9, 13), (13, 17) # Palm
|
||||
]
|
||||
|
||||
# Get image dimensions
|
||||
h, w = image.shape[:2]
|
||||
|
||||
# Draw connections
|
||||
for connection in connections:
|
||||
start_idx, end_idx = connection
|
||||
start = hand_landmarks[start_idx]
|
||||
end = hand_landmarks[end_idx]
|
||||
|
||||
start_point = (int(start.x * w), int(start.y * h))
|
||||
end_point = (int(end.x * w), int(end.y * h))
|
||||
|
||||
cv2.line(image, start_point, end_point, (0, 255, 0), 2)
|
||||
|
||||
# Draw landmarks
|
||||
for i, landmark in enumerate(hand_landmarks):
|
||||
x = int(landmark.x * w)
|
||||
y = int(landmark.y * h)
|
||||
|
||||
# Different colors for different parts
|
||||
if i == 0: # Wrist
|
||||
color = (255, 0, 0)
|
||||
radius = 8
|
||||
elif i in [4, 8, 12, 16, 20]: # Fingertips
|
||||
color = (0, 0, 255)
|
||||
radius = 6
|
||||
else:
|
||||
color = (0, 255, 0)
|
||||
radius = 4
|
||||
|
||||
cv2.circle(image, (x, y), radius, color, -1)
|
||||
cv2.circle(image, (x, y), radius + 2, (255, 255, 255), 1)
|
||||
|
||||
# Extract features
|
||||
features = get_optimized_features(hand_landmarks)
|
||||
|
||||
# Make prediction
|
||||
input_tensor = torch.FloatTensor(features).unsqueeze(0)
|
||||
output = model(input_tensor)
|
||||
probabilities = torch.softmax(output, dim=1)[0]
|
||||
|
||||
# Get top prediction
|
||||
predicted_idx = torch.argmax(probabilities).item()
|
||||
confidence = probabilities[predicted_idx].item()
|
||||
predicted_sign = label_encoder.inverse_transform([predicted_idx])[0]
|
||||
|
||||
# Add to buffer for smoothing
|
||||
if confidence > 0.3: # Only add if confident enough
|
||||
prediction_buffer.append(predicted_sign)
|
||||
|
||||
# Get smoothed prediction (most common in buffer)
|
||||
if len(prediction_buffer) >= 5:
|
||||
from collections import Counter
|
||||
|
||||
smoothed_sign = Counter(prediction_buffer).most_common(1)[0][0]
|
||||
else:
|
||||
smoothed_sign = predicted_sign
|
||||
|
||||
# Get top 5 predictions
|
||||
top5_prob, top5_idx = torch.topk(probabilities, min(5, num_classes))
|
||||
|
||||
# Display prediction area (dark semi-transparent overlay)
|
||||
overlay = image.copy()
|
||||
cv2.rectangle(overlay, (10, 10), (500, 280), (0, 0, 0), -1)
|
||||
cv2.addWeighted(overlay, 0.7, image, 0.3, 0, image)
|
||||
|
||||
# Display main prediction
|
||||
cv2.putText(image, f"Sign: {smoothed_sign}",
|
||||
(20, 50), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (0, 255, 0), 3)
|
||||
cv2.putText(image, f"Confidence: {confidence:.1%}",
|
||||
(20, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2)
|
||||
|
||||
# Display top 5 predictions
|
||||
cv2.putText(image, "Top 5:",
|
||||
(20, 130), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
|
||||
|
||||
y_offset = 160
|
||||
for i, (prob, idx) in enumerate(zip(top5_prob, top5_idx)):
|
||||
sign = label_encoder.inverse_transform([idx.item()])[0]
|
||||
prob_val = prob.item()
|
||||
|
||||
# Color code by confidence
|
||||
if i == 0:
|
||||
color = (0, 255, 0) # Green for top
|
||||
elif prob_val > 0.1:
|
||||
color = (0, 255, 255) # Yellow for decent confidence
|
||||
else:
|
||||
color = (128, 128, 128) # Gray for low confidence
|
||||
|
||||
cv2.putText(image, f"{i + 1}. {sign}: {prob_val:.1%}",
|
||||
(30, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
|
||||
y_offset += 30
|
||||
else:
|
||||
# No hand detected
|
||||
cv2.putText(image, "No hand detected",
|
||||
(20, 50), cv2.FONT_HERSHEY_SIMPLEX, 1.2, (0, 0, 255), 2)
|
||||
prediction_buffer.clear()
|
||||
|
||||
# Display FPS and info
|
||||
info_y = image.shape[0] - 60
|
||||
cv2.putText(image, f"FPS: {current_fps:.1f}",
|
||||
(20, info_y), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
||||
cv2.putText(image, f"Frame: {frame_count}",
|
||||
(20, info_y + 25), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
||||
|
||||
# Display controls at bottom right
|
||||
controls_text = "ESC: Exit | SPACE: Clear | H: Landmarks"
|
||||
text_size = cv2.getTextSize(controls_text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)[0]
|
||||
cv2.putText(image, controls_text,
|
||||
(image.shape[1] - text_size[0] - 10, image.shape[0] - 10),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (200, 200, 200), 1)
|
||||
|
||||
# Show the image
|
||||
cv2.imshow('ASL Recognition - Transformer+CNN', image)
|
||||
|
||||
# Handle key presses
|
||||
key = cv2.waitKey(1) & 0xFF
|
||||
|
||||
if key == 27: # ESC
|
||||
print("Exiting...")
|
||||
break
|
||||
elif key == 32: # SPACE
|
||||
prediction_buffer.clear()
|
||||
print("Prediction buffer cleared")
|
||||
elif key == ord('h') or key == ord('H'):
|
||||
show_landmarks = not show_landmarks
|
||||
print(f"Hand landmarks: {'ON' if show_landmarks else 'OFF'}")
|
||||
|
||||
# Cleanup
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
print("Recognition stopped.")
|
||||
Reference in New Issue
Block a user