Ts is tech
This commit is contained in:
4
.gitignore
vendored
4
.gitignore
vendored
@@ -1,2 +1,4 @@
|
||||
asl_kaggle/
|
||||
hand_landmarker.task
|
||||
hand_landmarker.task
|
||||
asl-dataset.zip
|
||||
asl-signs.zip
|
||||
168
training.py
168
training.py
@@ -14,6 +14,39 @@ import torch.nn.functional as F
|
||||
import math
|
||||
from pathlib import Path
|
||||
|
||||
# GPU Configuration
|
||||
print("=" * 50)
|
||||
print("GPU CONFIGURATION")
|
||||
print("=" * 50)
|
||||
|
||||
# Check CUDA availability
|
||||
if torch.cuda.is_available():
|
||||
print(f"✓ CUDA is available!")
|
||||
print(f"✓ GPU Device: {torch.cuda.get_device_name(0)}")
|
||||
print(f"✓ CUDA Version: {torch.version.cuda}")
|
||||
print(f"✓ Number of GPUs: {torch.cuda.device_count()}")
|
||||
print(f"✓ Current GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1024 ** 3:.2f} GB")
|
||||
|
||||
# Set default GPU device
|
||||
torch.cuda.set_device(0)
|
||||
device = torch.device('cuda:0')
|
||||
|
||||
# Enable cuDNN benchmark for better performance
|
||||
torch.backends.cudnn.benchmark = True
|
||||
torch.backends.cudnn.enabled = True
|
||||
|
||||
print(f"✓ cuDNN benchmark mode: enabled")
|
||||
else:
|
||||
print("✗ CUDA is NOT available. Using CPU.")
|
||||
print(" Make sure you have:")
|
||||
print(" 1. NVIDIA GPU")
|
||||
print(" 2. CUDA toolkit installed")
|
||||
print(" 3. PyTorch with CUDA support")
|
||||
device = torch.device('cpu')
|
||||
|
||||
print("=" * 50)
|
||||
print()
|
||||
|
||||
|
||||
# Load the dataset
|
||||
def load_kaggle_asl_data(base_path='asl_kaggle'):
|
||||
@@ -24,57 +57,40 @@ def load_kaggle_asl_data(base_path='asl_kaggle'):
|
||||
- train_landmark_files/ directory
|
||||
- sign_to_prediction_index_map.json
|
||||
"""
|
||||
|
||||
# Load train.csv
|
||||
train_df = pd.read_csv(os.path.join(base_path, 'train.csv'))
|
||||
|
||||
# Load sign mapping
|
||||
with open(os.path.join(base_path, 'sign_to_prediction_index_map.json'), 'r') as f:
|
||||
sign_to_idx = json.load(f)
|
||||
|
||||
print(f"Total sequences: {len(train_df)}")
|
||||
print(f"Unique signs: {len(sign_to_idx)}")
|
||||
print(f"Signs: {list(sign_to_idx.keys())[:10]}...") # Show first 10
|
||||
print(f"Signs: {list(sign_to_idx.keys())[:10]}...")
|
||||
|
||||
return train_df, sign_to_idx
|
||||
|
||||
|
||||
def extract_hand_landmarks_from_parquet(parquet_path):
|
||||
"""
|
||||
Extract hand landmarks from a parquet file
|
||||
The file contains landmarks for face, left_hand, pose, right_hand
|
||||
We only care about hand landmarks
|
||||
"""
|
||||
"""Extract hand landmarks from a parquet file"""
|
||||
df = pd.read_parquet(parquet_path)
|
||||
|
||||
# Filter for hand landmarks only (left_hand or right_hand)
|
||||
# For ASL, we'll use whichever hand is dominant in the sequence
|
||||
left_hand = df[df['type'] == 'left_hand']
|
||||
right_hand = df[df['type'] == 'right_hand']
|
||||
|
||||
# Use the hand with more detected landmarks
|
||||
if len(left_hand) > len(right_hand):
|
||||
hand_df = left_hand
|
||||
elif len(right_hand) > 0:
|
||||
hand_df = right_hand
|
||||
else:
|
||||
return None # No hand detected
|
||||
return None
|
||||
|
||||
# Get unique frames
|
||||
frames = hand_df['frame'].unique()
|
||||
|
||||
# We'll use the middle frame (most stable) or average across frames
|
||||
# For now, let's average the landmarks across all frames
|
||||
landmarks_list = []
|
||||
|
||||
for landmark_idx in range(21): # MediaPipe has 21 hand landmarks
|
||||
for landmark_idx in range(21):
|
||||
landmark_data = hand_df[hand_df['landmark_index'] == landmark_idx]
|
||||
|
||||
if len(landmark_data) == 0:
|
||||
# Missing landmark, use zeros
|
||||
landmarks_list.append([0.0, 0.0, 0.0])
|
||||
else:
|
||||
# Average across frames
|
||||
x = landmark_data['x'].mean()
|
||||
y = landmark_data['y'].mean()
|
||||
z = landmark_data['z'].mean()
|
||||
@@ -84,34 +100,26 @@ def extract_hand_landmarks_from_parquet(parquet_path):
|
||||
|
||||
|
||||
def get_optimized_features(landmarks_array):
|
||||
"""
|
||||
Extract optimally normalized relative coordinates from landmark array
|
||||
landmarks_array: (21, 3) numpy array
|
||||
Returns 77 features
|
||||
"""
|
||||
"""Extract optimally normalized relative coordinates from landmark array"""
|
||||
if landmarks_array is None:
|
||||
return None
|
||||
|
||||
points = landmarks_array.copy()
|
||||
|
||||
# Translation invariance
|
||||
wrist = points[0].copy()
|
||||
points_centered = points - wrist
|
||||
|
||||
# Scale invariance
|
||||
palm_size = np.linalg.norm(points[9] - points[0])
|
||||
if palm_size < 1e-6:
|
||||
palm_size = 1.0
|
||||
points_normalized = points_centered / palm_size
|
||||
|
||||
# Standardization
|
||||
mean = np.mean(points_normalized, axis=0)
|
||||
std = np.std(points_normalized, axis=0) + 1e-8
|
||||
points_standardized = (points_normalized - mean) / std
|
||||
|
||||
features = points_standardized.flatten()
|
||||
|
||||
# Derived features
|
||||
finger_tips = [4, 8, 12, 16, 20]
|
||||
|
||||
tip_distances = []
|
||||
@@ -143,7 +151,7 @@ def get_optimized_features(landmarks_array):
|
||||
|
||||
# Load dataset
|
||||
print("Loading Kaggle ASL dataset...")
|
||||
base_path = 'asl_kaggle' # Change this to your dataset path
|
||||
base_path = 'asl_kaggle'
|
||||
train_df, sign_to_idx = load_kaggle_asl_data(base_path)
|
||||
|
||||
# Process landmarks
|
||||
@@ -155,19 +163,16 @@ for idx, row in train_df.iterrows():
|
||||
if idx % 1000 == 0:
|
||||
print(f"Processed {idx}/{len(train_df)} sequences...")
|
||||
|
||||
# Construct full path
|
||||
parquet_path = os.path.join(base_path, row['path'])
|
||||
|
||||
if not os.path.exists(parquet_path):
|
||||
continue
|
||||
|
||||
# Extract landmarks
|
||||
landmarks = extract_hand_landmarks_from_parquet(parquet_path)
|
||||
|
||||
if landmarks is None:
|
||||
continue
|
||||
|
||||
# Get features
|
||||
features = get_optimized_features(landmarks)
|
||||
|
||||
if features is None:
|
||||
@@ -200,7 +205,7 @@ if np.isinf(X).any():
|
||||
X = X[mask]
|
||||
y = y[mask]
|
||||
|
||||
# Encode labels using the provided mapping
|
||||
# Encode labels
|
||||
label_encoder = LabelEncoder()
|
||||
y_encoded = label_encoder.fit_transform(y)
|
||||
num_classes = len(label_encoder.classes_)
|
||||
@@ -230,8 +235,33 @@ class ASLDataset(Dataset):
|
||||
train_dataset = ASLDataset(X_train, y_train)
|
||||
test_dataset = ASLDataset(X_test, y_test)
|
||||
|
||||
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4)
|
||||
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False, num_workers=4)
|
||||
# Optimized DataLoader settings for GPU
|
||||
num_workers = 4 if device.type == 'cuda' else 0
|
||||
pin_memory = True if device.type == 'cuda' else False
|
||||
batch_size = 128 if device.type == 'cuda' else 64 # Larger batch size for GPU
|
||||
|
||||
train_loader = DataLoader(
|
||||
train_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=num_workers,
|
||||
pin_memory=pin_memory,
|
||||
persistent_workers=True if num_workers > 0 else False
|
||||
)
|
||||
|
||||
test_loader = DataLoader(
|
||||
test_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=False,
|
||||
num_workers=num_workers,
|
||||
pin_memory=pin_memory,
|
||||
persistent_workers=True if num_workers > 0 else False
|
||||
)
|
||||
|
||||
print(f"\nDataLoader Configuration:")
|
||||
print(f" Batch size: {batch_size}")
|
||||
print(f" Num workers: {num_workers}")
|
||||
print(f" Pin memory: {pin_memory}")
|
||||
|
||||
|
||||
# Positional Encoding for Transformer
|
||||
@@ -261,14 +291,11 @@ class TransformerCNN_ASL(nn.Module):
|
||||
self.input_dim = input_dim
|
||||
self.d_model = d_model
|
||||
|
||||
# Input projection
|
||||
self.input_projection = nn.Linear(input_dim, d_model)
|
||||
self.input_norm = nn.LayerNorm(d_model)
|
||||
|
||||
# Positional encoding
|
||||
self.pos_encoder = PositionalEncoding(d_model, max_len=100)
|
||||
|
||||
# Transformer Encoder with Self-Attention
|
||||
encoder_layer = nn.TransformerEncoderLayer(
|
||||
d_model=d_model,
|
||||
nhead=nhead,
|
||||
@@ -280,7 +307,6 @@ class TransformerCNN_ASL(nn.Module):
|
||||
)
|
||||
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
||||
|
||||
# CNN Blocks for pattern detection
|
||||
self.conv1 = nn.Conv1d(d_model, 1024, kernel_size=3, padding=1)
|
||||
self.bn1 = nn.BatchNorm1d(1024)
|
||||
self.pool1 = nn.MaxPool1d(2)
|
||||
@@ -293,10 +319,9 @@ class TransformerCNN_ASL(nn.Module):
|
||||
|
||||
self.conv3 = nn.Conv1d(2048, 4096, kernel_size=3, padding=1)
|
||||
self.bn3 = nn.BatchNorm1d(4096)
|
||||
self.pool3 = nn.AdaptiveMaxPool1d(1) # Global pooling
|
||||
self.pool3 = nn.AdaptiveMaxPool1d(1)
|
||||
self.dropout3 = nn.Dropout(0.4)
|
||||
|
||||
# Fully connected layers
|
||||
self.fc1 = nn.Linear(4096, 4096)
|
||||
self.bn_fc1 = nn.BatchNorm1d(4096)
|
||||
self.dropout_fc1 = nn.Dropout(0.5)
|
||||
@@ -314,21 +339,15 @@ class TransformerCNN_ASL(nn.Module):
|
||||
def forward(self, x):
|
||||
batch_size = x.size(0)
|
||||
|
||||
# Project to d_model
|
||||
x = self.input_projection(x)
|
||||
x = self.input_norm(x)
|
||||
x = x.unsqueeze(1)
|
||||
|
||||
# Add positional encoding
|
||||
x = self.pos_encoder(x)
|
||||
|
||||
# Transformer encoder with self-attention
|
||||
x = self.transformer_encoder(x)
|
||||
|
||||
# Reshape for CNN
|
||||
x = x.permute(0, 2, 1)
|
||||
|
||||
# CNN pattern detection
|
||||
x = F.gelu(self.bn1(self.conv1(x)))
|
||||
x = self.pool1(x)
|
||||
x = self.dropout1(x)
|
||||
@@ -341,10 +360,8 @@ class TransformerCNN_ASL(nn.Module):
|
||||
x = self.pool3(x)
|
||||
x = self.dropout3(x)
|
||||
|
||||
# Flatten
|
||||
x = x.view(batch_size, -1)
|
||||
|
||||
# Fully connected layers
|
||||
x = F.gelu(self.bn_fc1(self.fc1(x)))
|
||||
x = self.dropout_fc1(x)
|
||||
|
||||
@@ -360,8 +377,7 @@ class TransformerCNN_ASL(nn.Module):
|
||||
|
||||
|
||||
# Initialize model
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
print(f"\nUsing device: {device}")
|
||||
print(f"\nInitializing model on {device}...")
|
||||
|
||||
model = TransformerCNN_ASL(
|
||||
input_dim=X.shape[1],
|
||||
@@ -383,6 +399,12 @@ if total_params > 50_000_000:
|
||||
else:
|
||||
print(f"Model is within 50M parameter limit ✓")
|
||||
|
||||
# Display GPU memory usage
|
||||
if device.type == 'cuda':
|
||||
print(f"\nGPU Memory after model initialization:")
|
||||
print(f" Allocated: {torch.cuda.memory_allocated(0) / 1024 ** 2:.2f} MB")
|
||||
print(f" Cached: {torch.cuda.memory_reserved(0) / 1024 ** 2:.2f} MB")
|
||||
|
||||
# Loss and optimizer
|
||||
criterion = nn.CrossEntropyLoss(label_smoothing=0.1)
|
||||
optimizer = optim.AdamW(model.parameters(), lr=0.001, weight_decay=1e-4)
|
||||
@@ -399,14 +421,13 @@ def train_epoch(model, loader, criterion, optimizer, device):
|
||||
total = 0
|
||||
|
||||
for X_batch, y_batch in loader:
|
||||
X_batch, y_batch = X_batch.to(device), y_batch.to(device)
|
||||
X_batch, y_batch = X_batch.to(device, non_blocking=True), y_batch.to(device, non_blocking=True)
|
||||
|
||||
optimizer.zero_grad()
|
||||
optimizer.zero_grad(set_to_none=True) # More efficient than zero_grad()
|
||||
outputs = model(X_batch)
|
||||
loss = criterion(outputs, y_batch)
|
||||
loss.backward()
|
||||
|
||||
# Gradient clipping
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
|
||||
|
||||
optimizer.step()
|
||||
@@ -427,7 +448,7 @@ def evaluate(model, loader, device):
|
||||
|
||||
with torch.no_grad():
|
||||
for X_batch, y_batch in loader:
|
||||
X_batch, y_batch = X_batch.to(device), y_batch.to(device)
|
||||
X_batch, y_batch = X_batch.to(device, non_blocking=True), y_batch.to(device, non_blocking=True)
|
||||
outputs = model(X_batch)
|
||||
_, predicted = outputs.max(1)
|
||||
total += y_batch.size(0)
|
||||
@@ -459,13 +480,23 @@ best_acc = 0
|
||||
patience_counter = 0
|
||||
|
||||
print("\nStarting training with Transformer + CNN architecture...")
|
||||
print("=" * 50)
|
||||
|
||||
# Track training time
|
||||
import time
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
epoch_start = time.time()
|
||||
|
||||
train_loss, train_acc = train_epoch(model, train_loader, criterion, optimizer, device)
|
||||
test_acc = evaluate(model, test_loader, device)
|
||||
|
||||
scheduler.step()
|
||||
|
||||
epoch_time = time.time() - epoch_start
|
||||
|
||||
if test_acc > best_acc:
|
||||
best_acc = test_acc
|
||||
patience_counter = 0
|
||||
@@ -488,13 +519,30 @@ for epoch in range(num_epochs):
|
||||
|
||||
if (epoch + 1) % 5 == 0:
|
||||
current_lr = optimizer.param_groups[0]['lr']
|
||||
print(
|
||||
f"Epoch {epoch + 1}/{num_epochs} | Loss: {train_loss:.4f} | Train: {train_acc:.2f}% | Test: {test_acc:.2f}% | Best: {best_acc:.2f}% | LR: {current_lr:.6f}")
|
||||
print(f"Epoch {epoch + 1}/{num_epochs} | Loss: {train_loss:.4f} | "
|
||||
f"Train: {train_acc:.2f}% | Test: {test_acc:.2f}% | "
|
||||
f"Best: {best_acc:.2f}% | LR: {current_lr:.6f} | "
|
||||
f"Time: {epoch_time:.2f}s")
|
||||
|
||||
if device.type == 'cuda':
|
||||
print(f" GPU Memory: {torch.cuda.memory_allocated(0) / 1024 ** 2:.2f} MB")
|
||||
|
||||
# Early stopping
|
||||
if patience_counter >= patience:
|
||||
print(f"\nEarly stopping triggered at epoch {epoch + 1}")
|
||||
break
|
||||
|
||||
total_time = time.time() - start_time
|
||||
|
||||
print("=" * 50)
|
||||
print(f"\nTraining complete! Best test accuracy: {best_acc:.2f}%")
|
||||
print("Model saved to asl_kaggle_transformer.pth")
|
||||
print(f"Total training time: {total_time / 60:.2f} minutes")
|
||||
print(f"Average time per epoch: {total_time / (epoch + 1):.2f} seconds")
|
||||
print("Model saved to asl_kaggle_transformer.pth")
|
||||
|
||||
# Final GPU memory stats
|
||||
if device.type == 'cuda':
|
||||
print(f"\nFinal GPU Memory Usage:")
|
||||
print(f" Allocated: {torch.cuda.memory_allocated(0) / 1024 ** 2:.2f} MB")
|
||||
print(f" Cached: {torch.cuda.memory_reserved(0) / 1024 ** 2:.2f} MB")
|
||||
print(f" Max Allocated: {torch.cuda.max_memory_allocated(0) / 1024 ** 2:.2f} MB")
|
||||
Reference in New Issue
Block a user