Files
2025-05-20 23:13:19 -05:00

102 lines
3.7 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

> [!NOTE] A mass $m$ attached to a spring with constant $k$ oscillates on a frictionless surface. Derive an expression for the velocity $v$ as a function of displacement $x$.
>
> [!INFO]-
> Total mechanical energy in SHM is conserved:
> $$
> E = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2
> $$
> Solving for $v$:
> $$
> v = \pm \sqrt{\frac{k}{m}(A^2 - x^2)}
> $$
> [!NOTE] A wave traveling along a rope is represented by $y(x,t) = 0.02\cos(40x - 600t)$. Determine the amplitude, wavelength, frequency, and speed of the wave.
>
> [!INFO]-
> The general wave form is $y = A\cos(kx - \omega t)$:
> - Amplitude $A = 0.02\ \mathrm{m}$
> - Wave number $k = 40 \Rightarrow \lambda = \frac{2\pi}{k} = \frac{2\pi}{40} = 0.157\ \mathrm{m}$
> - Angular frequency $\omega = 600 \Rightarrow f = \frac{\omega}{2\pi} = \frac{600}{2\pi} \approx 95.5\ \mathrm{Hz}$
> - Wave speed $v = f\lambda = 95.5 \times 0.157 \approx 15\ \mathrm{m/s}$
> [!NOTE] In Young's double slit experiment, fringes are formed on a screen 1.2 m away using light of wavelength $600\ \text{nm}$. The slits are separated by $0.2\ \text{mm}$. Calculate the distance between adjacent bright fringes.
>
> [!INFO]-
> Fringe spacing is given by:
> $$
> y = \frac{\lambda D}{d} = \frac{600 \times 10^{-9} \times 1.2}{0.2 \times 10^{-3}} = 3.6\ \text{mm}
> $$
> [!NOTE] A pendulum of length $0.5\ \mathrm{m}$ is displaced by a small angle. Determine its period and explain why amplitude does not affect the result.
>
> [!INFO]-
> The period is:
> $$
> T = 2\pi\sqrt{\frac{L}{g}} = 2\pi\sqrt{\frac{0.5}{9.8}} \approx 1.41\ \mathrm{s}
> $$
> In the small-angle approximation ($\theta < 10^\circ$), motion is independent of amplitude.
> [!NOTE] A charged particle $q$ moves through a uniform electric field $E$. Derive the expression for the work done on the charge and its change in potential energy.
>
> [!INFO]-
> Work done:
> $$
> W = qEd
> $$
> Change in potential energy:
> $$
> \Delta U = -qEd
> $$
> since electric potential energy decreases when the charge moves in the direction of the field.
> [!NOTE] A capacitor of $10\ \mu\mathrm{F}$ is charged to $5\ \mathrm{V}$. Calculate the energy stored in it.
>
> [!INFO]-
> $$
> E = \frac{1}{2}CV^2 = \frac{1}{2} \cdot 10 \times 10^{-6} \cdot 25 = 1.25 \times 10^{-4}\ \mathrm{J}
> $$
> [!NOTE] A coil of wire rotates in a magnetic field. Use Faradays law to derive the expression for the induced emf.
>
> [!INFO]-
> Faradays law:
> $$
> \mathcal{E} = -\frac{d\Phi}{dt}
> $$
> Magnetic flux $\Phi = B A \cos(\omega t)$, so:
> $$
> \mathcal{E} = B A \omega \sin(\omega t)
> $$
> [!NOTE] A wire carries a current of $3\ \mathrm{A}$ through a magnetic field of $0.5\ \mathrm{T}$ perpendicular to its length. The wire is $0.4\ \mathrm{m}$ long. Find the magnetic force.
>
> [!INFO]-
> $$
> F = ILB\sin\theta = 3 \cdot 0.4 \cdot 0.5 \cdot 1 = 0.6\ \mathrm{N}
> $$
> [!NOTE] Explain the effect of damping on the amplitude-frequency graph of a driven harmonic oscillator.
>
> [!INFO]-
> Damping reduces the peak amplitude and shifts the resonant frequency slightly lower. Greater damping broadens the curve and lowers the quality factor $Q$.
> [!NOTE] A mass-spring oscillator experiences light damping. Write the differential equation and general solution.
>
> [!INFO]-
> Equation:
> $$
> m\ddot{x} + b\dot{x} + kx = 0
> $$
> Solution:
> $$
> x(t) = A e^{-\gamma t} \cos(\omega' t + \phi)
> $$
> where $\gamma = \frac{b}{2m}$ and $\omega' = \sqrt{\omega_0^2 - \gamma^2}$.
> [!NOTE] A $0.2\ \mathrm{kg}$ object experiences a force due to gravity from Earth at a distance of $6.4 \times 10^6\ \mathrm{m}$. Calculate the force.
>
> [!INFO]-
> $$
> F = G\frac{Mm}{r^2} = 6.67 \times 10^{-11} \cdot \frac{5.97 \times 10^{24} \cdot 0.2}{(6.4 \times 10^6)^2} \approx 1.96\ \mathrm{N}
> $$