thermo stuff
This commit is contained in:
@@ -65,5 +65,29 @@ $$
|
||||
\lambda_{\text{peak}}=\frac{b}{T}
|
||||
$$
|
||||
|
||||
Where $b$ is Wien's displacement constant, equal to $2.897771955\cdot 10^{-3} \mathrm{m}\cdot\mathrm{K}$.
|
||||
Where $b$ is Wien's displacement constant, equal to $2.897771955\cdot 10^{-3} \mathrm{m}\cdot\mathrm{K}$.
|
||||
|
||||
> [!NOTE]
|
||||
> The material does not matter. All black bodies emit radiation over all wavelengths.
|
||||
|
||||
## Stefan Boltzmann Law of Radiation
|
||||
This law describes the emissive power of a Black Body per unit area.
|
||||
|
||||
$$
|
||||
E_b=\varepsilon \sigma\cdot T^4
|
||||
$$
|
||||
|
||||
In the above equation,:
|
||||
|
||||
- $E_b$ is the **Emissive Power** of a black body, per unit time, per unit area.
|
||||
- $\varepsilon$ is the emissivity of an object
|
||||
- $\sigma$ is the Boltzmann constant, about $\approx 5.670374419\cdot 10^{-8} \mathrm{W}\cdot\mathrm{m}^{-2}\cdot \mathrm{K}^{-4}
|
||||
- A perfect black body has an emissivity of $1$, and an albedo of $0$
|
||||
- always work in default SI units
|
||||
|
||||
If you desire the total power across the entirety of the surface:
|
||||
$$
|
||||
P_b=A\varepsilon \sigma\cdot T^4
|
||||
$$
|
||||
Where $A$ is the area of the exposed surface.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user