Files
multivar-work/labs-set-2/template.tex
2025-10-02 00:43:31 -05:00

133 lines
3.7 KiB
TeX

\documentclass{report}
\input{preamble}
\input{macros}
\input{letterfonts}
\title{\Huge{Calculus III}}
\author{\huge{Krishna Ayyalasomayajula}}
\date{}
\begin{document}
\maketitle
\newpage% or \cleardoublepage
% \pdfbookmark[<level>]{<title>}{<dest>}
\pdfbookmark[section]{\contentsname}{toc}
\tableofcontents
\pagebreak
\chapter{Lab 7}
\section{Work}
\qs{}{
\begin{align*}
\vec{r} \in \mathbb{R} \therefore t \ge 0 \because e^{\sqrt{t}}\notin\mathbb{R} \; t|t<0 \\
\text{This corresponds with answer choice D}
\end{align*}
}
\qs{}{
\begin{align*}
\forall t>4, \quad \vec{r}\cdot\hat{j}\notin\mathbb{R} \\
\ln(t-1) \text{ is not defined } \forall t\le1 \\
\text{This corresponds with answer choice D} \\
\end{align*}
}
\qs{}{
\begin{align*}
\vec{r}\cdot\hat{j}\in[-4,4] \quad \land \quad \vec{r}\cdot\hat{i}\in[-3,3] \\
\frac{\mathrm{d}\vec{r}}{\mathrm{d}t}=\langle -3\sin t ,4\cos t \rangle \\
\frac{\mathrm{d}\vec{r}}{\mathrm{d}t} \right |_{t=\tfrac{\pi}{2}}= \langle -3,0 \rangle \quad \vec{r}(0)=\langle 3,0 \rangle \\
\text{This corresponds with answer choice B}
\end{align*}
}
\qs{}{
\begin{align*}
\text{This can be directly evaluated to: } \\
\langle 28,-49 \rangle \\
\text{This corresponds with answer choice D}
\end{align*}
}
\qs{}{
\begin{align*}
\vec{r}\cdot\hat{j} \text{ is not defined for } t=1 \text{ but the limit as $t\to6$ can be evaluated without affecting the proceess} \\
\vec{r}\cdot\hat{i} \text{ is not defined for } t=1 \text{ but the limit as $t\to6$ can be evaluated without affecting the proceess} \\
\text{Using directevaluation: } \\
\langle \frac{5}{35},-\frac{36+12-3}{5} \rangle = \langle \tfrac{1}{7},-9 \rangle \\
\text{This corresponds with answer choice B}
\end{align*}
}
\qs{}{
\begin{align*}
\implies \langle 0,-6 \rangle \\
\text{This corresponds with answer choice B}
\end{align*}
}
\qs{}{
\begin{align*}
e^{-\ln 6}=6^{-1}=\tfrac{1}{6} \\
\implies \lim_{t\to\ln 6}{\langle 6e^{-t}, 3e^{-t} \rangle}=\langle 1,\tfrac{1}{2} \rangle \\
\text{This corresponds witha nswer choice B}
\end{align*}
}
\qs{}{
\begin{align*}
\frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \langle -14t,\tfrac{1}{3}t^2 \rangle \\
\text{This corresponds with answer choice C}
\end{align*}
}
\qs{}{
\begin{align*}
\frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \langle -\csc^2 t, -\cot t\csc t \rangle \\
\text{This corresponds with answer choice A}
\end{align*}
}
\qs{}{
\begin{align*}
\frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \langle 8te^{t^2}, -3, 2t \rangle \\
\text{This corresponds with answer choice B}
\end{align*}
}
\qs{}{
\begin{align*}
\frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \langle 18\frac{1}{6t},6t^2 \rangle \\
\frac{\mathrm{d}^2\vec{r}}{\mathrm{d}t^2} = \langle \frac{-108}{36t^2}, 12t \rangle \langle \frac{-3}{t^2}, 12t \rangle \\
\text{This corresponds with answer choice C}
\end{align*}
}
\qs{}{
\begin{align*}
\frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \langle 15t^4,-60t^4,20t^4 \rangle \\
\| \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} \| \\
&= \sqrt{15^2\cdot t^8 +60^2\cdot t^8 +20^2\cdot t^8} \\
&= t^4 \sqrt{15^2+60^2+20^2} = 65t^4 \\
\hat{T}=\langle \tfrac{15}{65},\tfrac{-60}{65},\tfrac{20}{65} \rangle \\
\text{This corresponds with answer choice B}
\end{align*}
}
\qs{}{
\begin{align*}
\frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \langle 36\sin^2(2t)\cos(2t), -36\cos^2(2t)\sin(2t) \rangle \\
\| \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} \| \\
&= \sqrt{36^2 \sin^4(2t) \cos^2(2t)+36^2\cos^4(2t)\sin^2(2t)} \\
&=\sqrt{(36^2 \sin^2(2t) \cos^2(2t))\cdot (\sin^2(2t)+cos^2(2t))} \\
&=36\sin(2t)\cos(2t) \\
&=18\sin(4t)
\end{align*}
}
\end{document}