\documentclass{report} \input{preamble} \input{macros} \input{letterfonts} \title{\Huge{Calculus III}} \author{\huge{Krishna Ayyalasomayajula}} \date{} \begin{document} \maketitle \newpage% or \cleardoublepage % \pdfbookmark[]{}{<dest>} \pdfbookmark[section]{\contentsname}{toc} \tableofcontents \pagebreak \chapter{Lab 7} \section{Work} \qs{}{ \begin{align*} \vec{r} \in \mathbb{R} \therefore t \ge 0 \because e^{\sqrt{t}}\notin\mathbb{R} \; t|t<0 \\ \text{This corresponds with answer choice D} \end{align*} } \qs{}{ \begin{align*} \forall t>4, \quad \vec{r}\cdot\hat{j}\notin\mathbb{R} \\ \ln(t-1) \text{ is not defined } \forall t\le1 \\ \text{This corresponds with answer choice D} \\ \end{align*} } \qs{}{ \begin{align*} \vec{r}\cdot\hat{j}\in[-4,4] \quad \land \quad \vec{r}\cdot\hat{i}\in[-3,3] \\ \frac{\mathrm{d}\vec{r}}{\mathrm{d}t}=\langle -3\sin t ,4\cos t \rangle \\ \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} \right |_{t=\tfrac{\pi}{2}}= \langle -3,0 \rangle \quad \vec{r}(0)=\langle 3,0 \rangle \\ \text{This corresponds with answer choice B} \end{align*} } \qs{}{ \begin{align*} \text{This can be directly evaluated to: } \\ \langle 28,-49 \rangle \\ \text{This corresponds with answer choice D} \end{align*} } \qs{}{ \begin{align*} \vec{r}\cdot\hat{j} \text{ is not defined for } t=1 \text{ but the limit as $t\to6$ can be evaluated without affecting the proceess} \\ \vec{r}\cdot\hat{i} \text{ is not defined for } t=1 \text{ but the limit as $t\to6$ can be evaluated without affecting the proceess} \\ \text{Using directevaluation: } \\ \langle \frac{5}{35},-\frac{36+12-3}{5} \rangle = \langle \tfrac{1}{7},-9 \rangle \\ \text{This corresponds with answer choice B} \end{align*} } \qs{}{ \begin{align*} \implies \langle 0,-6 \rangle \\ \text{This corresponds with answer choice B} \end{align*} } \qs{}{ \begin{align*} e^{-\ln 6}=6^{-1}=\tfrac{1}{6} \\ \implies \lim_{t\to\ln 6}{\langle 6e^{-t}, 3e^{-t} \rangle}=\langle 1,\tfrac{1}{2} \rangle \\ \text{This corresponds witha nswer choice B} \end{align*} } \qs{}{ \begin{align*} \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \langle -14t,\tfrac{1}{3}t^2 \rangle \\ \text{This corresponds with answer choice C} \end{align*} } \qs{}{ \begin{align*} \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \langle -\csc^2 t, -\cot t\csc t \rangle \\ \text{This corresponds with answer choice A} \end{align*} } \qs{}{ \begin{align*} \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \langle 8te^{t^2}, -3, 2t \rangle \\ \text{This corresponds with answer choice B} \end{align*} } \qs{}{ \begin{align*} \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \langle 18\frac{1}{6t},6t^2 \rangle \\ \frac{\mathrm{d}^2\vec{r}}{\mathrm{d}t^2} = \langle \frac{-108}{36t^2}, 12t \rangle \langle \frac{-3}{t^2}, 12t \rangle \\ \text{This corresponds with answer choice C} \end{align*} } \qs{}{ \begin{align*} \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \langle 15t^4,-60t^4,20t^4 \rangle \\ \| \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} \| \\ &= \sqrt{15^2\cdot t^8 +60^2\cdot t^8 +20^2\cdot t^8} \\ &= t^4 \sqrt{15^2+60^2+20^2} = 65t^4 \\ \hat{T}=\langle \tfrac{15}{65},\tfrac{-60}{65},\tfrac{20}{65} \rangle \\ \text{This corresponds with answer choice B} \end{align*} } \qs{}{ \begin{align*} \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \langle 36\sin^2(2t)\cos(2t), -36\cos^2(2t)\sin(2t) \rangle \\ \| \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} \| \\ &= \sqrt{36^2 \sin^4(2t) \cos^2(2t)+36^2\cos^4(2t)\sin^2(2t)} \\ &=\sqrt{(36^2 \sin^2(2t) \cos^2(2t))\cdot (\sin^2(2t)+cos^2(2t))} \\ &=36\sin(2t)\cos(2t) \\ &=18\sin(4t) \end{align*} } \end{document}