okay 15 is kidna wacky, but apparently i did not do anything wrong the last time i got stuck

This commit is contained in:
2025-10-02 18:43:50 -05:00
parent 83b5a0e53f
commit ecc23ea96d
2 changed files with 41 additions and 6 deletions

Binary file not shown.

View File

@@ -119,13 +119,48 @@
}
\qs{}{
\begin{align*}
\frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \langle 36\sin^2(2t)\cos(2t), -36\cos^2(2t)\sin(2t) \rangle \\
\| \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} \| \\
&= \sqrt{36^2 \sin^4(2t) \cos^2(2t)+36^2\cos^4(2t)\sin^2(2t)} \\
&=\sqrt{(36^2 \sin^2(2t) \cos^2(2t))\cdot (\sin^2(2t)+cos^2(2t))} \\
&=36\sin(2t)\cos(2t) \\
&=18\sin(4t)
\vec{r}(t) &= 6\sin^3(2t)\,\hat{i} + 6\cos^3(2t)\,\hat{j} \\[6pt]
\frac{\mathrm{d}\vec{r}}{\mathrm{d}t}
&= \langle 36\sin^2(2t)\cos(2t),\; -36\cos^2(2t)\sin(2t) \rangle \\[6pt]
&= 36\sin(2t)\cos(2t)\,(\sin(2t)\,\hat{i} - \cos(2t)\,\hat{j})
\end{align*}
\begin{align*}
\left\|\frac{\mathrm{d}\vec{r}}{\mathrm{d}t}\right\|
&= \sqrt{(36\sin^2(2t)\cos(2t))^2 + (-36\cos^2(2t)\sin(2t))^2} \\[6pt]
&= 36\sqrt{\sin^4(2t)\cos^2(2t) + \cos^4(2t)\sin^2(2t)} \\[6pt]
&= 36\sqrt{\sin^2(2t)\cos^2(2t)} \\[6pt]
&= 36\,|\sin(2t)\cos(2t)| \\[6pt]
&= 18\,|\sin(4t)|
\end{align*}
\begin{align*}
\hat{T}(t)
&= \frac{\dfrac{d\vec r}{dt}}{\left\|\dfrac{d\vec r}{dt}\right\|}
= \frac{36\sin(2t)\cos(2t)(\sin(2t)\,\hat{i} - \cos(2t)\,\hat{j})}{36|\sin(2t)\cos(2t)|} \\[6pt]
&= \sin(2t)\,\hat{i} - \cos(2t)\,\hat{j}
\end{align*}
\text{This corresponds with answer choice B.}
}
\qs{}{
Let $\vec{C}$ encode the components of the constant of integration such that $\vec{C}\in\mathbb{R}^3$
\begin{align*}
\frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \langle t^4+5t^2,4t \rangle \\
\int\mathrm{d}\vec{r}= \int \langle t^4+5t^2,4t \rangle \mathrm{d}t \\
\vec{r}(t)&=\langle \tfrac{1}{5}t^5+\tfrac{5}{3}t^3,2t^2 \rangle + \vec{C}\\
\vec{C}&=\vec{r}(0)=\langle 5,-6 \rangle
\end{align*}
This corresponds with answer choice C.
}
\qs{}{
\begin{align*}
\implies \int_0^3{\left \langle \frac{2}{\sqrt{1+t}},-9t^2,\frac{6}{(1+t^2)^2}\right \rangle \mathrm{d}t }\\
\implies \int_0^3{\left \langle 2(1+t)^{-\tfrac{1}{2}},-9t^2,\frac{6}{(1+t^2)^2}\right \rangle \mathrm{d}t }
\end{align*}
}