done
This commit is contained in:
Binary file not shown.
@@ -598,5 +598,45 @@ This corresponds with answer choice B.
|
||||
\end{align*}
|
||||
This corresponds with answer choice A.
|
||||
}
|
||||
\qs{}{
|
||||
\begin{align*}
|
||||
\vec{r}(t) &= \langle 2t-7,\; t^2-2,\; 7\rangle \\
|
||||
\vec{r}^{\prime}(t) &= \langle 2,\; 2t,\; 0\rangle \\
|
||||
\vec{r}^{\prime\prime}(t) &= \langle 0,\; 2,\; 0\rangle \\
|
||||
\vec{r}^{\prime\prime\prime}(t) &= \langle 0,\; 0,\; 0\rangle \\[4pt]
|
||||
\vec{r}^{\prime}\times\vec{r}^{\prime\prime} &=
|
||||
\begin{vmatrix}
|
||||
\hat{i} & \hat{j} & \hat{k} \\
|
||||
2 & 2t & 0 \\
|
||||
0 & 2 & 0
|
||||
\end{vmatrix}
|
||||
= \langle 0,0,4\rangle \\[4pt]
|
||||
(\vec{r}^{\prime}\times\vec{r}^{\prime\prime})\cdot\vec{r}^{\prime\prime\prime} &= \langle 0,0,4\rangle\cdot\langle 0,0,0\rangle = 0 \\[4pt]
|
||||
\tau &= \frac{(\vec{r}^{\prime}\times\vec{r}^{\prime\prime})\cdot\vec{r}^{\prime\prime\prime}}
|
||||
{\|\vec{r}^{\prime}\times\vec{r}^{\prime\prime}\|^2}
|
||||
= \frac{0}{\| \langle0,0,4\rangle\|^2} = 0.
|
||||
\end{align*}
|
||||
This corresponds with answer choice A.
|
||||
}
|
||||
\qs{}{
|
||||
\begin{align*}
|
||||
\vec{r}(t) &= \langle 3\sin t,\; 3\cos t,\; -t\rangle \\
|
||||
\vec{r}^{\prime}(t) &= \langle 3\cos t,\; -3\sin t,\; -1\rangle \\
|
||||
\vec{r}^{\prime\prime}(t) &= \langle -3\sin t,\; -3\cos t,\; 0\rangle \\
|
||||
\vec{r}^{\prime\prime\prime}(t) &= \langle -3\cos t,\; 3\sin t,\; 0\rangle \\[4pt]
|
||||
\vec{r}^{\prime}\times\vec{r}^{\prime\prime} &=
|
||||
\begin{vmatrix}
|
||||
\hat{i} & \hat{j} & \hat{k} \\
|
||||
3\cos t & -3\sin t & -1 \\
|
||||
-3\sin t & -3\cos t & 0
|
||||
\end{vmatrix}
|
||||
= \langle -3\cos t,\; 3\sin t,\; -9\rangle \\[4pt]
|
||||
\| \vec{r}^{\prime}\times\vec{r}^{\prime\prime}\|^2 &= (-3\cos t)^2+(3\sin t)^2+(-9)^2 = 9+81=90 \\[4pt]
|
||||
(\vec{r}^{\prime}\times\vec{r}^{\prime\prime})\cdot\vec{r}^{\prime\prime\prime}
|
||||
&= (-3\cos t)(-3\cos t) + (3\sin t)(3\sin t) + (-9)(0) = 9(\cos^2 t+\sin^2 t)=9 \\[4pt]
|
||||
\tau &= \frac{9}{90} = \frac{1}{10}.
|
||||
\end{align*}
|
||||
This corresponds with answer choice B.
|
||||
}
|
||||
|
||||
\end{document}
|
||||
|
||||
Reference in New Issue
Block a user