This commit is contained in:
2025-10-04 16:46:27 -05:00
parent 24511e9236
commit 285c3df8d0
2 changed files with 40 additions and 0 deletions

Binary file not shown.

View File

@@ -598,5 +598,45 @@ This corresponds with answer choice B.
\end{align*}
This corresponds with answer choice A.
}
\qs{}{
\begin{align*}
\vec{r}(t) &= \langle 2t-7,\; t^2-2,\; 7\rangle \\
\vec{r}^{\prime}(t) &= \langle 2,\; 2t,\; 0\rangle \\
\vec{r}^{\prime\prime}(t) &= \langle 0,\; 2,\; 0\rangle \\
\vec{r}^{\prime\prime\prime}(t) &= \langle 0,\; 0,\; 0\rangle \\[4pt]
\vec{r}^{\prime}\times\vec{r}^{\prime\prime} &=
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
2 & 2t & 0 \\
0 & 2 & 0
\end{vmatrix}
= \langle 0,0,4\rangle \\[4pt]
(\vec{r}^{\prime}\times\vec{r}^{\prime\prime})\cdot\vec{r}^{\prime\prime\prime} &= \langle 0,0,4\rangle\cdot\langle 0,0,0\rangle = 0 \\[4pt]
\tau &= \frac{(\vec{r}^{\prime}\times\vec{r}^{\prime\prime})\cdot\vec{r}^{\prime\prime\prime}}
{\|\vec{r}^{\prime}\times\vec{r}^{\prime\prime}\|^2}
= \frac{0}{\| \langle0,0,4\rangle\|^2} = 0.
\end{align*}
This corresponds with answer choice A.
}
\qs{}{
\begin{align*}
\vec{r}(t) &= \langle 3\sin t,\; 3\cos t,\; -t\rangle \\
\vec{r}^{\prime}(t) &= \langle 3\cos t,\; -3\sin t,\; -1\rangle \\
\vec{r}^{\prime\prime}(t) &= \langle -3\sin t,\; -3\cos t,\; 0\rangle \\
\vec{r}^{\prime\prime\prime}(t) &= \langle -3\cos t,\; 3\sin t,\; 0\rangle \\[4pt]
\vec{r}^{\prime}\times\vec{r}^{\prime\prime} &=
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
3\cos t & -3\sin t & -1 \\
-3\sin t & -3\cos t & 0
\end{vmatrix}
= \langle -3\cos t,\; 3\sin t,\; -9\rangle \\[4pt]
\| \vec{r}^{\prime}\times\vec{r}^{\prime\prime}\|^2 &= (-3\cos t)^2+(3\sin t)^2+(-9)^2 = 9+81=90 \\[4pt]
(\vec{r}^{\prime}\times\vec{r}^{\prime\prime})\cdot\vec{r}^{\prime\prime\prime}
&= (-3\cos t)(-3\cos t) + (3\sin t)(3\sin t) + (-9)(0) = 9(\cos^2 t+\sin^2 t)=9 \\[4pt]
\tau &= \frac{9}{90} = \frac{1}{10}.
\end{align*}
This corresponds with answer choice B.
}
\end{document}