should be it
This commit is contained in:
666
external/duckdb/third_party/tdigest/t_digest.hpp
vendored
Normal file
666
external/duckdb/third_party/tdigest/t_digest.hpp
vendored
Normal file
@@ -0,0 +1,666 @@
|
||||
/*
|
||||
* Licensed to Derrick R. Burns under one or more
|
||||
* contributor license agreements. See the NOTICES file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <algorithm>
|
||||
#include <cfloat>
|
||||
#include <cmath>
|
||||
#include <queue>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#ifdef min
|
||||
#undef min
|
||||
#endif
|
||||
|
||||
#ifdef max
|
||||
#undef max
|
||||
#endif
|
||||
|
||||
|
||||
namespace duckdb_tdigest {
|
||||
|
||||
using Value = double;
|
||||
using Weight = double;
|
||||
using Index = size_t;
|
||||
|
||||
const size_t kHighWater = 40000;
|
||||
const double pi = 3.14159265358979323846;
|
||||
class Centroid {
|
||||
public:
|
||||
Centroid() : Centroid(0.0, 0.0) {
|
||||
}
|
||||
|
||||
Centroid(Value mean, Weight weight) : mean_(mean), weight_(weight) {
|
||||
}
|
||||
|
||||
inline Value mean() const noexcept {
|
||||
return mean_;
|
||||
}
|
||||
|
||||
inline Weight weight() const noexcept {
|
||||
return weight_;
|
||||
}
|
||||
|
||||
inline void add(const Centroid &c) {
|
||||
// CHECK_GT(c.weight_, 0);
|
||||
if (weight_ != 0.0) {
|
||||
weight_ += c.weight_;
|
||||
mean_ += c.weight_ * (c.mean_ - mean_) / weight_;
|
||||
} else {
|
||||
weight_ = c.weight_;
|
||||
mean_ = c.mean_;
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
Value mean_ = 0;
|
||||
Weight weight_ = 0;
|
||||
};
|
||||
|
||||
struct CentroidList {
|
||||
explicit CentroidList(const std::vector<Centroid> &s) : iter(s.cbegin()), end(s.cend()) {
|
||||
}
|
||||
std::vector<Centroid>::const_iterator iter;
|
||||
std::vector<Centroid>::const_iterator end;
|
||||
|
||||
bool advance() {
|
||||
return ++iter != end;
|
||||
}
|
||||
};
|
||||
|
||||
class CentroidListComparator {
|
||||
public:
|
||||
CentroidListComparator() {
|
||||
}
|
||||
|
||||
bool operator()(const CentroidList &left, const CentroidList &right) const {
|
||||
return left.iter->mean() > right.iter->mean();
|
||||
}
|
||||
};
|
||||
|
||||
using CentroidListQueue = std::priority_queue<CentroidList, std::vector<CentroidList>, CentroidListComparator>;
|
||||
|
||||
struct CentroidComparator {
|
||||
bool operator()(const Centroid &a, const Centroid &b) const {
|
||||
return a.mean() < b.mean();
|
||||
}
|
||||
};
|
||||
|
||||
class TDigest {
|
||||
class TDigestComparator {
|
||||
public:
|
||||
TDigestComparator() {
|
||||
}
|
||||
|
||||
bool operator()(const TDigest *left, const TDigest *right) const {
|
||||
return left->totalSize() > right->totalSize();
|
||||
}
|
||||
};
|
||||
|
||||
using TDigestQueue = std::priority_queue<const TDigest *, std::vector<const TDigest *>, TDigestComparator>;
|
||||
|
||||
public:
|
||||
TDigest() : TDigest(1000) {
|
||||
}
|
||||
|
||||
explicit TDigest(Value compression) : TDigest(compression, 0) {
|
||||
}
|
||||
|
||||
TDigest(Value compression, Index bufferSize) : TDigest(compression, bufferSize, 0) {
|
||||
}
|
||||
|
||||
TDigest(Value compression, Index unmergedSize, Index mergedSize)
|
||||
: compression_(compression), maxProcessed_(processedSize(mergedSize, compression)),
|
||||
maxUnprocessed_(unprocessedSize(unmergedSize, compression)) {
|
||||
processed_.reserve(maxProcessed_);
|
||||
unprocessed_.reserve(maxUnprocessed_ + 1);
|
||||
}
|
||||
|
||||
TDigest(std::vector<Centroid> &&processed, std::vector<Centroid> &&unprocessed, Value compression,
|
||||
Index unmergedSize, Index mergedSize)
|
||||
: TDigest(compression, unmergedSize, mergedSize) {
|
||||
processed_ = std::move(processed);
|
||||
unprocessed_ = std::move(unprocessed);
|
||||
|
||||
processedWeight_ = weight(processed_);
|
||||
unprocessedWeight_ = weight(unprocessed_);
|
||||
if (!processed_.empty()) {
|
||||
min_ = std::min(min_, processed_[0].mean());
|
||||
max_ = std::max(max_, (processed_.cend() - 1)->mean());
|
||||
}
|
||||
updateCumulative();
|
||||
}
|
||||
|
||||
static Weight weight(std::vector<Centroid> ¢roids) noexcept {
|
||||
Weight w = 0.0;
|
||||
for (auto centroid : centroids) {
|
||||
w += centroid.weight();
|
||||
}
|
||||
return w;
|
||||
}
|
||||
|
||||
TDigest &operator=(TDigest &&o) {
|
||||
compression_ = o.compression_;
|
||||
maxProcessed_ = o.maxProcessed_;
|
||||
maxUnprocessed_ = o.maxUnprocessed_;
|
||||
processedWeight_ = o.processedWeight_;
|
||||
unprocessedWeight_ = o.unprocessedWeight_;
|
||||
processed_ = std::move(o.processed_);
|
||||
unprocessed_ = std::move(o.unprocessed_);
|
||||
cumulative_ = std::move(o.cumulative_);
|
||||
min_ = o.min_;
|
||||
max_ = o.max_;
|
||||
return *this;
|
||||
}
|
||||
|
||||
TDigest(TDigest &&o)
|
||||
: TDigest(std::move(o.processed_), std::move(o.unprocessed_), o.compression_, o.maxUnprocessed_,
|
||||
o.maxProcessed_) {
|
||||
}
|
||||
|
||||
static inline Index processedSize(Index size, Value compression) noexcept {
|
||||
return (size == 0) ? static_cast<Index>(2 * std::ceil(compression)) : size;
|
||||
}
|
||||
|
||||
static inline Index unprocessedSize(Index size, Value compression) noexcept {
|
||||
return (size == 0) ? static_cast<Index>(8 * std::ceil(compression)) : size;
|
||||
}
|
||||
|
||||
// merge in another t-digest
|
||||
inline void merge(const TDigest *other) {
|
||||
std::vector<const TDigest *> others {other};
|
||||
add(others.cbegin(), others.cend());
|
||||
}
|
||||
|
||||
const std::vector<Centroid> &processed() const {
|
||||
return processed_;
|
||||
}
|
||||
|
||||
const std::vector<Centroid> &unprocessed() const {
|
||||
return unprocessed_;
|
||||
}
|
||||
|
||||
Index maxUnprocessed() const {
|
||||
return maxUnprocessed_;
|
||||
}
|
||||
|
||||
Index maxProcessed() const {
|
||||
return maxProcessed_;
|
||||
}
|
||||
|
||||
inline void add(std::vector<const TDigest *> digests) {
|
||||
add(digests.cbegin(), digests.cend());
|
||||
}
|
||||
|
||||
// merge in a vector of tdigests in the most efficient manner possible
|
||||
// in constant space
|
||||
// works for any value of kHighWater
|
||||
void add(std::vector<const TDigest *>::const_iterator iter, std::vector<const TDigest *>::const_iterator end) {
|
||||
if (iter != end) {
|
||||
auto size = std::distance(iter, end);
|
||||
TDigestQueue pq(TDigestComparator {});
|
||||
for (; iter != end; iter++) {
|
||||
pq.push((*iter));
|
||||
}
|
||||
std::vector<const TDigest *> batch;
|
||||
batch.reserve(size_t(size));
|
||||
|
||||
size_t totalSize = 0;
|
||||
while (!pq.empty()) {
|
||||
auto td = pq.top();
|
||||
batch.push_back(td);
|
||||
pq.pop();
|
||||
totalSize += td->totalSize();
|
||||
if (totalSize >= kHighWater || pq.empty()) {
|
||||
mergeProcessed(batch);
|
||||
mergeUnprocessed(batch);
|
||||
processIfNecessary();
|
||||
batch.clear();
|
||||
totalSize = 0;
|
||||
}
|
||||
}
|
||||
updateCumulative();
|
||||
}
|
||||
}
|
||||
|
||||
Weight processedWeight() const {
|
||||
return processedWeight_;
|
||||
}
|
||||
|
||||
Weight unprocessedWeight() const {
|
||||
return unprocessedWeight_;
|
||||
}
|
||||
|
||||
bool haveUnprocessed() const {
|
||||
return unprocessed_.size() > 0;
|
||||
}
|
||||
|
||||
size_t totalSize() const {
|
||||
return processed_.size() + unprocessed_.size();
|
||||
}
|
||||
|
||||
long totalWeight() const {
|
||||
return static_cast<long>(processedWeight_ + unprocessedWeight_);
|
||||
}
|
||||
|
||||
// return the cdf on the t-digest
|
||||
Value cdf(Value x) {
|
||||
if (haveUnprocessed() || isDirty()) {
|
||||
process();
|
||||
}
|
||||
return cdfProcessed(x);
|
||||
}
|
||||
|
||||
bool isDirty() {
|
||||
return processed_.size() > maxProcessed_ || unprocessed_.size() > maxUnprocessed_;
|
||||
}
|
||||
|
||||
// return the cdf on the processed values
|
||||
Value cdfProcessed(Value x) const {
|
||||
if (processed_.empty()) {
|
||||
// no data to examin_e
|
||||
|
||||
return 0.0;
|
||||
} else if (processed_.size() == 1) {
|
||||
// exactly one centroid, should have max_==min_
|
||||
auto width = max_ - min_;
|
||||
if (x < min_) {
|
||||
return 0.0;
|
||||
} else if (x > max_) {
|
||||
return 1.0;
|
||||
} else if (x - min_ <= width) {
|
||||
// min_ and max_ are too close together to do any viable interpolation
|
||||
return 0.5;
|
||||
} else {
|
||||
// interpolate if somehow we have weight > 0 and max_ != min_
|
||||
return (x - min_) / (max_ - min_);
|
||||
}
|
||||
} else {
|
||||
auto n = processed_.size();
|
||||
if (x <= min_) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (x >= max_) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
// check for the left tail
|
||||
if (x <= mean(0)) {
|
||||
|
||||
// note that this is different than mean(0) > min_ ... this guarantees interpolation works
|
||||
if (mean(0) - min_ > 0) {
|
||||
return (x - min_) / (mean(0) - min_) * weight(0) / processedWeight_ / 2.0;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
// and the right tail
|
||||
if (x >= mean(n - 1)) {
|
||||
if (max_ - mean(n - 1) > 0) {
|
||||
return 1.0 - (max_ - x) / (max_ - mean(n - 1)) * weight(n - 1) / processedWeight_ / 2.0;
|
||||
} else {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
CentroidComparator cc;
|
||||
auto iter = std::upper_bound(processed_.cbegin(), processed_.cend(), Centroid(x, 0), cc);
|
||||
|
||||
auto i = size_t(std::distance(processed_.cbegin(), iter));
|
||||
auto z1 = x - (iter - 1)->mean();
|
||||
auto z2 = (iter)->mean() - x;
|
||||
return weightedAverage(cumulative_[i - 1], z2, cumulative_[i], z1) / processedWeight_;
|
||||
}
|
||||
}
|
||||
|
||||
// this returns a quantile on the t-digest
|
||||
Value quantile(Value q) {
|
||||
if (haveUnprocessed() || isDirty()) {
|
||||
process();
|
||||
}
|
||||
return quantileProcessed(q);
|
||||
}
|
||||
|
||||
// this returns a quantile on the currently processed values without changing the t-digest
|
||||
// the value will not represent the unprocessed values
|
||||
Value quantileProcessed(Value q) const {
|
||||
if (q < 0 || q > 1) {
|
||||
return NAN;
|
||||
}
|
||||
|
||||
if (processed_.size() == 0) {
|
||||
// no sorted means no data, no way to get a quantile
|
||||
return NAN;
|
||||
} else if (processed_.size() == 1) {
|
||||
// with one data point, all quantiles lead to Rome
|
||||
|
||||
return mean(0);
|
||||
}
|
||||
|
||||
// we know that there are at least two sorted now
|
||||
auto n = processed_.size();
|
||||
|
||||
// if values were stored in a sorted array, index would be the offset we are Weighterested in
|
||||
const auto index = q * processedWeight_;
|
||||
|
||||
// at the boundaries, we return min_ or max_
|
||||
if (index <= weight(0) / 2.0) {
|
||||
return min_ + 2.0 * index / weight(0) * (mean(0) - min_);
|
||||
}
|
||||
|
||||
auto iter = std::lower_bound(cumulative_.cbegin(), cumulative_.cend(), index);
|
||||
|
||||
if (iter + 1 != cumulative_.cend()) {
|
||||
auto i = size_t(std::distance(cumulative_.cbegin(), iter));
|
||||
auto z1 = index - *(iter - 1);
|
||||
auto z2 = *(iter)-index;
|
||||
// LOG(INFO) << "z2 " << z2 << " index " << index << " z1 " << z1;
|
||||
return weightedAverage(mean(i - 1), z2, mean(i), z1);
|
||||
}
|
||||
auto z1 = index - processedWeight_ - weight(n - 1) / 2.0;
|
||||
auto z2 = weight(n - 1) / 2 - z1;
|
||||
return weightedAverage(mean(n - 1), z1, max_, z2);
|
||||
}
|
||||
|
||||
Value compression() const {
|
||||
return compression_;
|
||||
}
|
||||
|
||||
void add(Value x) {
|
||||
add(x, 1);
|
||||
}
|
||||
|
||||
inline void compress() {
|
||||
process();
|
||||
}
|
||||
|
||||
// add a single centroid to the unprocessed vector, processing previously unprocessed sorted if our limit has
|
||||
// been reached.
|
||||
inline bool add(Value x, Weight w) {
|
||||
if (std::isnan(x)) {
|
||||
return false;
|
||||
}
|
||||
unprocessed_.push_back(Centroid(x, w));
|
||||
unprocessedWeight_ += w;
|
||||
processIfNecessary();
|
||||
return true;
|
||||
}
|
||||
|
||||
inline void add(std::vector<Centroid>::const_iterator iter, std::vector<Centroid>::const_iterator end) {
|
||||
while (iter != end) {
|
||||
const size_t diff = size_t(std::distance(iter, end));
|
||||
const size_t room = maxUnprocessed_ - unprocessed_.size();
|
||||
auto mid = iter + int64_t(std::min(diff, room));
|
||||
while (iter != mid) {
|
||||
unprocessed_.push_back(*(iter++));
|
||||
}
|
||||
if (unprocessed_.size() >= maxUnprocessed_) {
|
||||
process();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
Value compression_;
|
||||
|
||||
Value min_ = std::numeric_limits<Value>::max();
|
||||
|
||||
Value max_ = std::numeric_limits<Value>::min();
|
||||
|
||||
Index maxProcessed_;
|
||||
|
||||
Index maxUnprocessed_;
|
||||
|
||||
Value processedWeight_ = 0.0;
|
||||
|
||||
Value unprocessedWeight_ = 0.0;
|
||||
|
||||
std::vector<Centroid> processed_;
|
||||
|
||||
std::vector<Centroid> unprocessed_;
|
||||
|
||||
std::vector<Weight> cumulative_;
|
||||
|
||||
// return mean of i-th centroid
|
||||
inline Value mean(size_t i) const noexcept {
|
||||
return processed_[i].mean();
|
||||
}
|
||||
|
||||
// return weight of i-th centroid
|
||||
inline Weight weight(size_t i) const noexcept {
|
||||
return processed_[i].weight();
|
||||
}
|
||||
|
||||
// append all unprocessed centroids into current unprocessed vector
|
||||
void mergeUnprocessed(const std::vector<const TDigest *> &tdigests) {
|
||||
if (tdigests.size() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
size_t total = unprocessed_.size();
|
||||
for (auto &td : tdigests) {
|
||||
total += td->unprocessed_.size();
|
||||
}
|
||||
|
||||
unprocessed_.reserve(total);
|
||||
for (auto &td : tdigests) {
|
||||
unprocessed_.insert(unprocessed_.end(), td->unprocessed_.cbegin(), td->unprocessed_.cend());
|
||||
unprocessedWeight_ += td->unprocessedWeight_;
|
||||
}
|
||||
}
|
||||
|
||||
// merge all processed centroids together into a single sorted vector
|
||||
void mergeProcessed(const std::vector<const TDigest *> &tdigests) {
|
||||
if (tdigests.size() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
size_t total = 0;
|
||||
CentroidListQueue pq(CentroidListComparator {});
|
||||
for (auto &td : tdigests) {
|
||||
auto &sorted = td->processed_;
|
||||
auto size = sorted.size();
|
||||
if (size > 0) {
|
||||
pq.push(CentroidList(sorted));
|
||||
total += size;
|
||||
processedWeight_ += td->processedWeight_;
|
||||
}
|
||||
}
|
||||
if (total == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (processed_.size() > 0) {
|
||||
pq.push(CentroidList(processed_));
|
||||
total += processed_.size();
|
||||
}
|
||||
|
||||
std::vector<Centroid> sorted;
|
||||
sorted.reserve(total);
|
||||
|
||||
while (!pq.empty()) {
|
||||
auto best = pq.top();
|
||||
pq.pop();
|
||||
sorted.push_back(*(best.iter));
|
||||
if (best.advance()) {
|
||||
pq.push(best);
|
||||
}
|
||||
}
|
||||
processed_ = std::move(sorted);
|
||||
if (processed_.size() > 0) {
|
||||
min_ = std::min(min_, processed_[0].mean());
|
||||
max_ = std::max(max_, (processed_.cend() - 1)->mean());
|
||||
}
|
||||
}
|
||||
|
||||
inline void processIfNecessary() {
|
||||
if (isDirty()) {
|
||||
process();
|
||||
}
|
||||
}
|
||||
|
||||
void updateCumulative() {
|
||||
const auto n = processed_.size();
|
||||
cumulative_.clear();
|
||||
cumulative_.reserve(n + 1);
|
||||
auto previous = 0.0;
|
||||
for (Index i = 0; i < n; i++) {
|
||||
auto current = weight(i);
|
||||
auto halfCurrent = current / 2.0;
|
||||
cumulative_.push_back(previous + halfCurrent);
|
||||
previous = previous + current;
|
||||
}
|
||||
cumulative_.push_back(previous);
|
||||
}
|
||||
|
||||
// merges unprocessed_ centroids and processed_ centroids together and processes them
|
||||
// when complete, unprocessed_ will be empty and processed_ will have at most maxProcessed_ centroids
|
||||
inline void process() {
|
||||
CentroidComparator cc;
|
||||
std::sort(unprocessed_.begin(), unprocessed_.end(), cc);
|
||||
auto count = unprocessed_.size();
|
||||
unprocessed_.insert(unprocessed_.end(), processed_.cbegin(), processed_.cend());
|
||||
std::inplace_merge(unprocessed_.begin(), unprocessed_.begin() + int64_t(count), unprocessed_.end(), cc);
|
||||
|
||||
processedWeight_ += unprocessedWeight_;
|
||||
unprocessedWeight_ = 0;
|
||||
processed_.clear();
|
||||
|
||||
processed_.push_back(unprocessed_[0]);
|
||||
Weight wSoFar = unprocessed_[0].weight();
|
||||
Weight wLimit = processedWeight_ * integratedQ(1.0);
|
||||
|
||||
auto end = unprocessed_.end();
|
||||
for (auto iter = unprocessed_.cbegin() + 1; iter < end; iter++) {
|
||||
auto ¢roid = *iter;
|
||||
Weight projectedW = wSoFar + centroid.weight();
|
||||
if (projectedW <= wLimit) {
|
||||
wSoFar = projectedW;
|
||||
(processed_.end() - 1)->add(centroid);
|
||||
} else {
|
||||
auto k1 = integratedLocation(wSoFar / processedWeight_);
|
||||
wLimit = processedWeight_ * integratedQ(k1 + 1.0);
|
||||
wSoFar += centroid.weight();
|
||||
processed_.emplace_back(centroid);
|
||||
}
|
||||
}
|
||||
unprocessed_.clear();
|
||||
min_ = std::min(min_, processed_[0].mean());
|
||||
max_ = std::max(max_, (processed_.cend() - 1)->mean());
|
||||
updateCumulative();
|
||||
}
|
||||
|
||||
inline size_t checkWeights() {
|
||||
return checkWeights(processed_, processedWeight_);
|
||||
}
|
||||
|
||||
size_t checkWeights(const std::vector<Centroid> &sorted, Value total) {
|
||||
size_t badWeight = 0;
|
||||
auto k1 = 0.0;
|
||||
auto q = 0.0;
|
||||
for (auto iter = sorted.cbegin(); iter != sorted.cend(); iter++) {
|
||||
auto w = iter->weight();
|
||||
auto dq = w / total;
|
||||
auto k2 = integratedLocation(q + dq);
|
||||
if (k2 - k1 > 1 && w != 1) {
|
||||
badWeight++;
|
||||
}
|
||||
if (k2 - k1 > 1.5 && w != 1) {
|
||||
badWeight++;
|
||||
}
|
||||
q += dq;
|
||||
k1 = k2;
|
||||
}
|
||||
|
||||
return badWeight;
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts a quantile into a centroid scale value. The centroid scale is nomin_ally
|
||||
* the number k of the centroid that a quantile point q should belong to. Due to
|
||||
* round-offs, however, we can't align things perfectly without splitting points
|
||||
* and sorted. We don't want to do that, so we have to allow for offsets.
|
||||
* In the end, the criterion is that any quantile range that spans a centroid
|
||||
* scale range more than one should be split across more than one centroid if
|
||||
* possible. This won't be possible if the quantile range refers to a single point
|
||||
* or an already existing centroid.
|
||||
* <p/>
|
||||
* This mapping is steep near q=0 or q=1 so each centroid there will correspond to
|
||||
* less q range. Near q=0.5, the mapping is flatter so that sorted there will
|
||||
* represent a larger chunk of quantiles.
|
||||
*
|
||||
* @param q The quantile scale value to be mapped.
|
||||
* @return The centroid scale value corresponding to q.
|
||||
*/
|
||||
inline Value integratedLocation(Value q) const {
|
||||
return compression_ * (std::asin(2.0 * q - 1.0) + pi / 2) / pi;
|
||||
}
|
||||
|
||||
inline Value integratedQ(Value k) const {
|
||||
return (std::sin(std::min(k, compression_) * pi / compression_ - pi / 2) + 1) / 2;
|
||||
}
|
||||
|
||||
/**
|
||||
* Same as {@link #weightedAverageSorted(Value, Value, Value, Value)} but flips
|
||||
* the order of the variables if <code>x2</code> is greater than
|
||||
* <code>x1</code>.
|
||||
*/
|
||||
static Value weightedAverage(Value x1, Value w1, Value x2, Value w2) {
|
||||
return (x1 <= x2) ? weightedAverageSorted(x1, w1, x2, w2) : weightedAverageSorted(x2, w2, x1, w1);
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute the weighted average between <code>x1</code> with a weight of
|
||||
* <code>w1</code> and <code>x2</code> with a weight of <code>w2</code>.
|
||||
* This expects <code>x1</code> to be less than or equal to <code>x2</code>
|
||||
* and is guaranteed to return a number between <code>x1</code> and
|
||||
* <code>x2</code>.
|
||||
*/
|
||||
static Value weightedAverageSorted(Value x1, Value w1, Value x2, Value w2) {
|
||||
const Value x = (x1 * w1 + x2 * w2) / (w1 + w2);
|
||||
return std::max(x1, std::min(x, x2));
|
||||
}
|
||||
|
||||
static Value interpolate(Value x, Value x0, Value x1) {
|
||||
return (x - x0) / (x1 - x0);
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes an interpolated value of a quantile that is between two sorted.
|
||||
*
|
||||
* Index is the quantile desired multiplied by the total number of samples - 1.
|
||||
*
|
||||
* @param index Denormalized quantile desired
|
||||
* @param previousIndex The denormalized quantile corresponding to the center of the previous centroid.
|
||||
* @param nextIndex The denormalized quantile corresponding to the center of the following centroid.
|
||||
* @param previousMean The mean of the previous centroid.
|
||||
* @param nextMean The mean of the following centroid.
|
||||
* @return The interpolated mean.
|
||||
*/
|
||||
static Value quantile(Value index, Value previousIndex, Value nextIndex, Value previousMean, Value nextMean) {
|
||||
const auto delta = nextIndex - previousIndex;
|
||||
const auto previousWeight = (nextIndex - index) / delta;
|
||||
const auto nextWeight = (index - previousIndex) / delta;
|
||||
return previousMean * previousWeight + nextMean * nextWeight;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace tdigest
|
||||
Reference in New Issue
Block a user