Files
ASLTranslator/rewrite_training.py
2026-01-24 16:48:07 -06:00

209 lines
7.2 KiB
Python

import os
import polars as pl
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import TensorDataset, DataLoader
from concurrent.futures import ProcessPoolExecutor
from tqdm import tqdm
from sklearn.model_selection import train_test_split
# --- CONFIGURATION ---
BASE_PATH = "asl_kaggle"
TARGET_FRAMES = 22
# Hand landmarks + Lip landmarks (approximate indices for high-value face points)
LIPS = [61, 146, 91, 181, 84, 17, 314, 405, 321, 375, 291, 308, 324, 318, 402, 317, 14, 87, 178, 88, 95]
HANDS = list(range(468, 543))
SELECTED_INDICES = LIPS + HANDS
NUM_FEATS = len(SELECTED_INDICES) * 3 # X, Y, Z for each selected point
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# --- DATA PROCESSING ---
def load_kaggle_metadata(base_path):
return pl.read_csv(os.path.join(base_path, "train.csv"))
def load_and_preprocess(path, base_path=BASE_PATH, target_frames=TARGET_FRAMES):
parquet_path = os.path.join(base_path, path)
df = pl.read_parquet(parquet_path)
# 1. Spatial Normalization (Nose Anchor)
anchors = (
df.filter((pl.col("type") == "face") & (pl.col("landmark_index") == 0))
.select([pl.col("frame"), pl.col("x").alias("nx"), pl.col("y").alias("ny"), pl.col("z").alias("nz")])
)
processed = (
df.join(anchors, on="frame", how="left")
.with_columns([
(pl.col("x") - pl.col("nx")).fill_null(0.0),
(pl.col("y") - pl.col("ny")).fill_null(0.0),
(pl.col("z") - pl.col("nz")).fill_null(0.0),
])
.sort(["frame", "type", "landmark_index"])
)
# 2. Reshape & Feature Selection
# Get unique frames and total landmarks (543)
raw_tensor = processed.select(["x", "y", "z"]).to_numpy().reshape(-1, 543, 3)
# Slice to keep only Hands and Lips
reduced_tensor = raw_tensor[:, SELECTED_INDICES, :]
# 3. Temporal Normalization (Resample to fixed frame count)
curr_len = reduced_tensor.shape[0]
indices = np.linspace(0, curr_len - 1, num=target_frames).round().astype(int)
return reduced_tensor[indices]
# --- MODEL ARCHITECTURE ---
class ASLClassifier(nn.Module):
def __init__(self, num_classes, target_frames=TARGET_FRAMES, num_feats=NUM_FEATS):
super().__init__()
self.conv1 = nn.Conv1d(num_feats, 256, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm1d(256)
self.conv2 = nn.Conv1d(256, 512, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm1d(512)
self.pool = nn.MaxPool1d(2)
self.dropout = nn.Dropout(0.5)
self.fc = nn.Linear(512, num_classes)
def forward(self, x):
# x: (Batch, Frames, Selected_Landmarks, 3)
x = x.view(x.shape[0], x.shape[1], -1) # Flatten landmarks/coords
x = x.transpose(1, 2) # (Batch, Features, Time)
x = F.relu(self.bn1(self.conv1(x)))
x = self.pool(x)
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool(x)
x = F.adaptive_avg_pool1d(x, 1).squeeze(-1)
x = self.dropout(x)
return self.fc(x)
# --- TRAINING FUNCTION ---
def train_model(model, train_loader, val_loader, epochs=20, lr=0.001):
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', patience=3, factor=0.5)
best_val_acc = 0.0
for epoch in range(epochs):
# Training phase
model.train()
train_loss = 0.0
train_correct = 0
train_total = 0
pbar = tqdm(train_loader, desc=f"Epoch {epoch + 1}/{epochs} [Train]")
for inputs, labels in pbar:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = torch.max(outputs, 1)
train_total += labels.size(0)
train_correct += (predicted == labels).sum().item()
pbar.set_postfix({'loss': f'{loss.item():.4f}', 'acc': f'{100 * train_correct / train_total:.2f}%'})
train_acc = 100 * train_correct / train_total
avg_train_loss = train_loss / len(train_loader)
# Validation phase
model.eval()
val_loss = 0.0
val_correct = 0
val_total = 0
with torch.no_grad():
for inputs, labels in tqdm(val_loader, desc=f"Epoch {epoch + 1}/{epochs} [Val]"):
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
val_loss += loss.item()
_, predicted = torch.max(outputs, 1)
val_total += labels.size(0)
val_correct += (predicted == labels).sum().item()
val_acc = 100 * val_correct / val_total
avg_val_loss = val_loss / len(val_loader)
scheduler.step(avg_val_loss)
print(f"\nEpoch {epoch + 1}/{epochs}:")
print(f" Train Loss: {avg_train_loss:.4f} | Train Acc: {train_acc:.2f}%")
print(f" Val Loss: {avg_val_loss:.4f} | Val Acc: {val_acc:.2f}%")
# Save best model
if val_acc > best_val_acc:
best_val_acc = val_acc
torch.save(model.state_dict(), 'best_asl_model.pth')
print(f" ✓ New best model saved! (Val Acc: {val_acc:.2f}%)")
print()
print(f"Training complete! Best validation accuracy: {best_val_acc:.2f}%")
# --- EXECUTION ---
if __name__ == "__main__":
asl_data = load_kaggle_metadata(BASE_PATH)
# Process all files
paths = asl_data["path"].to_list()
labels = asl_data["sign"].to_list()
# Create label mapping
unique_signs = sorted(set(labels))
sign_to_idx = {sign: idx for idx, sign in enumerate(unique_signs)}
label_indices = [sign_to_idx[sign] for sign in labels]
print(f"Processing {len(paths)} files in parallel...")
with ProcessPoolExecutor() as executor:
results = list(tqdm(executor.map(load_and_preprocess, paths), total=len(paths)))
# Create tensors
X = torch.tensor(np.array(results), dtype=torch.float32)
y = torch.tensor(label_indices, dtype=torch.long)
print(f"Dataset Tensor Shape: {X.shape}")
print(f"Labels Tensor Shape: {y.shape}")
print(f"Number of unique signs: {len(unique_signs)}")
# Train/Val split
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)
# Create DataLoaders
train_dataset = TensorDataset(X_train, y_train)
val_dataset = TensorDataset(X_val, y_val)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
print(f"Train samples: {len(train_dataset)}")
print(f"Val samples: {len(val_dataset)}")
# Initialize and train model
model = ASLClassifier(num_classes=len(unique_signs))
model.to(device)
print(f"\nModel initialized with {sum(p.numel() for p in model.parameters()):,} parameters")
print("Starting training...\n")
train_model(model, train_loader, val_loader, epochs=20, lr=0.002)