Files
ASLTranslator/rewrite_training.py

176 lines
6.1 KiB
Python

import os
import polars as pl
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import TensorDataset, DataLoader
from concurrent.futures import ProcessPoolExecutor
from tqdm import tqdm
from sklearn.model_selection import train_test_split
# --- CONFIG ---
BASE_PATH = "asl_kaggle"
TARGET_FRAMES = 22
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# --- DATA LOADING WITH RELATIVE FEATURES ---
def load_file_to_memory(path, base_path=BASE_PATH):
try:
parquet_path = os.path.join(base_path, path)
df = pl.read_parquet(parquet_path)
# 1. Global Anchor (Nose)
anchors = (
df.filter((pl.col("type") == "face") & (pl.col("landmark_index") == 0))
.select([
pl.col("frame"),
pl.col("x").alias("nx"),
pl.col("y").alias("ny"),
pl.col("z").alias("nz")
])
)
# 2. Local Anchors (Wrists)
# Left: 468, Right: 522
wrists = (
df.filter(pl.col("landmark_index").is_in([468, 522]))
.select([
pl.col("frame"),
pl.col("landmark_index"),
pl.col("x").alias("wx"),
pl.col("y").alias("wy")
])
)
processed = df.join(anchors, on="frame", how="left")
# Join wrist data to the main frame
# We use a left join on frame and landmark_index to align wrist coords with their rows
processed = (
processed.join(wrists, on=["frame", "landmark_index"], how="left")
.with_columns([
# Global (Nose-relative)
(pl.col("x") - pl.col("nx")).alias("x_g"),
(pl.col("y") - pl.col("ny")).alias("y_g"),
(pl.col("z") - pl.col("nz")).alias("z_g"),
# Local (Wrist-relative - defaults to global if not a hand point)
(pl.col("x") - pl.col("wx")).fill_null(pl.col("x") - pl.col("nx")).alias("x_l"),
(pl.col("y") - pl.col("wy")).fill_null(pl.col("y") - pl.col("ny")).alias("y_l"),
])
.sort(["frame", "type", "landmark_index"])
)
# We now have 5 channels: (x_g, y_g, z_g, x_l, y_l)
n_frames = processed["frame"].n_unique()
# Reshape to (Frames, 543 landmarks, 5 features)
tensor = processed.select(["x_g", "y_g", "z_g", "x_l", "y_l"]).to_numpy().reshape(n_frames, 543, 5)
# Temporal Resampling
indices = np.linspace(0, n_frames - 1, num=TARGET_FRAMES).round().astype(int)
return tensor[indices]
except Exception:
return np.zeros((TARGET_FRAMES, 543, 5))
# --- DUAL-STREAM MODEL ---
class ASLClassifier(nn.Module):
def __init__(self, num_classes):
super().__init__()
# 543 landmarks * 5 features per landmark = 2715
self.feat_dim = 543 * 5
self.conv1 = nn.Conv1d(self.feat_dim, 512, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm1d(512)
self.conv2 = nn.Conv1d(512, 512, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm1d(512)
self.pool = nn.MaxPool1d(2)
self.dropout = nn.Dropout(0.4)
self.fc = nn.Sequential(
nn.Linear(512, 1024),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(1024, num_classes)
)
def forward(self, x):
# x shape: (Batch, 22, 543, 5)
b, t, l, f = x.shape
# Flatten landmarks and features into one vector, then transpose for Conv1d
x = x.view(b, t, -1).transpose(1, 2) # (Batch, 2715, 22)
x = F.relu(self.bn1(self.conv1(x)))
x = self.pool(x)
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool(x)
# Global Average Pool across the time dimension
x = F.adaptive_avg_pool1d(x, 1).squeeze(-1)
return self.fc(self.dropout(x))
# --- EXECUTION ---
if __name__ == "__main__":
# 1. Setup Data
metadata = pl.read_csv(os.path.join(BASE_PATH, "train.csv"))
unique_signs = sorted(metadata["sign"].unique().to_list())
sign_to_idx = {sign: i for i, sign in enumerate(unique_signs)}
labels = [sign_to_idx[s] for s in metadata["sign"].to_list()]
paths = metadata["path"].to_list()
# 2. Load to RAM (Parallelized)
print(f"Loading {len(paths)} files into RAM with 5-channel features...")
with ProcessPoolExecutor() as executor:
data_list = list(tqdm(executor.map(load_file_to_memory, paths), total=len(paths)))
X = torch.tensor(np.array(data_list), dtype=torch.float32)
y = torch.tensor(labels, dtype=torch.long)
# 3. Split
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.1, stratify=y, random_state=42)
train_loader = DataLoader(TensorDataset(X_train, y_train), batch_size=64, shuffle=True)
val_loader = DataLoader(TensorDataset(X_val, y_val), batch_size=64)
# 4. Train
model = ASLClassifier(len(unique_signs)).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss(label_smoothing=0.1) # Helps prevent over-confidence
print(f"Starting training on {device}...")
for epoch in range(25):
model.train()
train_loss = 0
for batch_x, batch_y in tqdm(train_loader, desc=f"Epoch {epoch + 1}"):
batch_x, batch_y = batch_x.to(device), batch_y.to(device)
optimizer.zero_grad()
output = model(batch_x)
loss = criterion(output, batch_y)
loss.backward()
optimizer.step()
train_loss += loss.item()
# Validation
model.eval()
correct, total = 0, 0
with torch.no_grad():
for vx, vy in val_loader:
vx, vy = vx.to(device), vy.to(device)
pred = model(vx).argmax(1)
correct += (pred == vy).sum().item()
total += vy.size(0)
print(f"Epoch {epoch + 1} | Loss: {train_loss / len(train_loader):.4f} | Val Acc: {100 * correct / total:.2f}%")
if (epoch + 1) % 5 == 0:
torch.save(model.state_dict(), f"asl_model_v2_e{epoch + 1}.pth")