Files
ASLTranslator/training.py
2026-01-19 23:21:35 -06:00

549 lines
18 KiB
Python

import os
import json
import math
import numpy as np
import polars as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from multiprocessing import Pool, cpu_count
from functools import partial
from tqdm import tqdm
from collections import Counter
# ===============================
# GPU CONFIGURATION
# ===============================
print("=" * 60)
print("GPU CONFIGURATION")
print("=" * 60)
if torch.cuda.is_available():
print(f"✓ CUDA available!")
print(f"✓ GPU: {torch.cuda.get_device_name(0)}")
device = torch.device('cuda:0')
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.enabled = True
else:
print("✗ CUDA not available, using CPU")
device = torch.device('cpu')
print("=" * 60)
# ===============================
# SELECTED LANDMARK INDICES
# ===============================
IMPORTANT_FACE_INDICES = sorted(list(set([
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
55, 65, 66, 105, 107, 336, 296, 334,
33, 133, 160, 159, 158, 144, 145, 153,
362, 263, 387, 386, 385, 373, 374, 380,
1, 2, 98, 327,
61, 185, 40, 39, 37, 0, 267, 269, 270, 409,
291, 146, 91, 181, 84, 17, 314, 405, 321, 375,
78, 191, 80, 81, 82, 13, 312, 311, 310, 415,
308, 324, 318, 402, 317, 14, 87, 178, 88, 95
])))
NUM_FACE_POINTS = len(IMPORTANT_FACE_INDICES)
NUM_HAND_POINTS = 21 * 2
TOTAL_POINTS_PER_FRAME = NUM_HAND_POINTS + NUM_FACE_POINTS
# ===============================
# ENHANCED DATA EXTRACTION (POLARS)
# ===============================
def extract_multi_landmarks(path, min_valid_frames=3):
"""
Extract both hands + selected face landmarks with modality flags
Returns: dict with 'landmarks', 'left_hand_valid', 'right_hand_valid', 'face_valid'
"""
try:
df = pl.read_parquet(path)
seq = []
left_valid_frames = []
right_valid_frames = []
face_valid_frames = []
all_types = df.select("type").unique().to_series().to_list()
# Check if we have at least one of the required types
has_data = any(t in all_types for t in ["left_hand", "right_hand", "face"])
if not has_data:
return None
# Get all frames (might not start at 0)
frames = sorted(df.select("frame").unique().to_series().to_list())
if len(frames) < min_valid_frames:
return None
for frame in frames:
frame_df = df.filter(pl.col("frame") == frame)
frame_points = np.full((TOTAL_POINTS_PER_FRAME, 3), np.nan, dtype=np.float32)
pos = 0
left_valid = False
right_valid = False
face_valid = False
# Left hand (need at least 10 valid points)
left = frame_df.filter(pl.col("type") == "left_hand")
if left.height > 0:
valid_count = 0
for i in range(21):
row = left.filter(pl.col("landmark_index") == i)
if row.height > 0:
coords = row.select(["x", "y", "z"]).row(0)
if all(c is not None for c in coords):
frame_points[pos] = coords
valid_count += 1
pos += 1
left_valid = (valid_count >= 10)
else:
pos += 21
# Right hand (need at least 10 valid points)
right = frame_df.filter(pl.col("type") == "right_hand")
if right.height > 0:
valid_count = 0
for i in range(21):
row = right.filter(pl.col("landmark_index") == i)
if row.height > 0:
coords = row.select(["x", "y", "z"]).row(0)
if all(c is not None for c in coords):
frame_points[pos] = coords
valid_count += 1
pos += 1
right_valid = (valid_count >= 10)
else:
pos += 21
# Face (need at least 30% of selected landmarks)
face = frame_df.filter(pl.col("type") == "face")
if face.height > 0:
valid_count = 0
for idx in IMPORTANT_FACE_INDICES:
row = face.filter(pl.col("landmark_index") == idx)
if row.height > 0:
coords = row.select(["x", "y", "z"]).row(0)
if all(c is not None for c in coords):
frame_points[pos] = coords
valid_count += 1
pos += 1
face_valid = (valid_count >= len(IMPORTANT_FACE_INDICES) * 0.3)
# Accept frame if we have at least 20% valid data overall
valid_ratio = 1 - np.isnan(frame_points).mean()
if valid_ratio >= 0.20:
frame_points = np.nan_to_num(frame_points, nan=0.0)
seq.append(frame_points)
left_valid_frames.append(left_valid)
right_valid_frames.append(right_valid)
face_valid_frames.append(face_valid)
if len(seq) < min_valid_frames:
return None
return {
'landmarks': np.stack(seq),
'left_hand_valid': np.array(left_valid_frames),
'right_hand_valid': np.array(right_valid_frames),
'face_valid': np.array(face_valid_frames)
}
except Exception as e:
# Uncomment for debugging:
# print(f"Error processing {path}: {e}")
return None
def get_features_sequence(landmarks_data, max_frames=100):
"""
Enhanced feature extraction with separate modality processing
"""
if landmarks_data is None:
return None, None, None
landmarks_3d = landmarks_data['landmarks']
if len(landmarks_3d) == 0:
return None, None, None
T, N, _ = landmarks_3d.shape
# Separate modalities for independent normalization
left_hand = landmarks_3d[:, :21, :]
right_hand = landmarks_3d[:, 21:42, :]
face = landmarks_3d[:, 42:, :]
# Independent centering per modality
features_list = []
for modality, valid_mask in [
(left_hand, landmarks_data['left_hand_valid']),
(right_hand, landmarks_data['right_hand_valid']),
(face, landmarks_data['face_valid'])
]:
# Center on modality-specific mean
valid_frames = modality[valid_mask] if valid_mask.any() else modality
if len(valid_frames) > 0:
center = np.mean(valid_frames, axis=(0, 1), keepdims=True)
spread = np.std(valid_frames, axis=(0, 1), keepdims=True).max()
else:
center = 0
spread = 1
modality_norm = (modality - center) / max(spread, 1e-6)
flat = modality_norm.reshape(T, -1)
# Deltas
deltas = np.zeros_like(flat)
if T > 1:
deltas[1:] = flat[1:] - flat[:-1]
features_list.append(flat)
features_list.append(deltas)
# Combine all modalities
features = np.concatenate(features_list, axis=1)
# Create modality availability mask (which frames have which modalities)
modality_mask = np.stack([
landmarks_data['left_hand_valid'],
landmarks_data['right_hand_valid'],
landmarks_data['face_valid']
], axis=1).astype(np.float32) # (T, 3)
# Pad/truncate
if T < max_frames:
pad = np.zeros((max_frames - T, features.shape[1]), dtype=np.float32)
features = np.concatenate([features, pad], axis=0)
mask_pad = np.zeros((max_frames - T, 3), dtype=np.float32)
modality_mask = np.concatenate([modality_mask, mask_pad], axis=0)
frame_mask = np.zeros(max_frames, dtype=bool)
frame_mask[:T] = True
else:
features = features[:max_frames]
modality_mask = modality_mask[:max_frames]
frame_mask = np.ones(max_frames, dtype=bool)
features = np.nan_to_num(features, nan=0.0, posinf=0.0, neginf=0.0)
features = np.clip(features, -30, 30)
return features.astype(np.float32), frame_mask, modality_mask
def process_row(row_data, base_path, max_frames=100):
"""Process a single row - expects tuple of (path, sign)"""
path_rel, sign = row_data
path = os.path.join(base_path, path_rel)
if not os.path.exists(path):
return None, None, None, None
try:
lm_data = extract_multi_landmarks(path)
if lm_data is None:
return None, None, None, None
feat, frame_mask, modality_mask = get_features_sequence(lm_data, max_frames)
if feat is None:
return None, None, None, None
return feat, frame_mask, modality_mask, sign
except Exception:
return None, None, None, None
# ===============================
# ENHANCED MODEL WITH MODALITY AWARENESS
# ===============================
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=128):
super().__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe.unsqueeze(0))
def forward(self, x):
return x + self.pe[:, :x.size(1)]
class ModalityAwareTransformer(nn.Module):
def __init__(self, input_dim, num_classes, d_model=384, nhead=8, num_layers=5):
super().__init__()
# Main projection
self.proj = nn.Linear(input_dim, d_model)
# Modality embedding (3 modalities: left_hand, right_hand, face)
self.modality_embed = nn.Linear(3, d_model)
self.norm_in = nn.LayerNorm(d_model)
self.pos = PositionalEncoding(d_model)
enc_layer = nn.TransformerEncoderLayer(
d_model=d_model,
nhead=nhead,
dim_feedforward=d_model * 4,
dropout=0.15,
activation='gelu',
batch_first=True,
norm_first=True
)
self.encoder = nn.TransformerEncoder(enc_layer, num_layers=num_layers)
self.head = nn.Sequential(
nn.LayerNorm(d_model),
nn.Dropout(0.25),
nn.Linear(d_model, num_classes)
)
def forward(self, x, modality_mask=None, key_padding_mask=None):
# Project features
x = self.proj(x)
# Add modality information if available
if modality_mask is not None:
mod_embed = self.modality_embed(modality_mask)
x = x + mod_embed
x = self.norm_in(x)
x = self.pos(x)
x = self.encoder(x, src_key_padding_mask=key_padding_mask)
# Weighted average (giving more weight to frames with more valid modalities)
if modality_mask is not None:
weights = modality_mask.sum(dim=-1, keepdim=True) + 1e-6 # (B, T, 1)
weights = weights / weights.sum(dim=1, keepdim=True)
x = (x * weights).sum(dim=1)
else:
x = x.mean(dim=1)
return self.head(x)
def load_kaggle_asl_data(base_path):
"""Load training metadata using Polars"""
train_path = os.path.join(base_path, "train.csv")
train_df = pl.read_csv(train_path)
return train_df, None
# ===============================
# MAIN
# ===============================
def main():
base_path = "asl_kaggle"
max_frames = 100
MIN_SAMPLES_PER_CLASS = 5
print("\nLoading metadata...")
train_df, _ = load_kaggle_asl_data(base_path)
print(f"Total samples in train.csv: {train_df.height}")
# Convert to simple tuples for multiprocessing compatibility
rows = [(row[0], row[1]) for row in train_df.select(["path", "sign"]).iter_rows()]
print("\nProcessing sequences with BOTH hands + FACE (enhanced)...")
print("This may take a few minutes...")
with Pool(cpu_count()) as pool:
results = list(tqdm(
pool.imap(
partial(process_row, base_path=base_path, max_frames=max_frames),
rows,
chunksize=80
),
total=len(rows),
desc="Landmarks extraction"
))
X_list, frame_masks_list, modality_masks_list, y_list = [], [], [], []
failed_count = 0
for feat, frame_mask, modality_mask, sign in results:
if feat is not None and frame_mask is not None:
X_list.append(feat)
frame_masks_list.append(frame_mask)
modality_masks_list.append(modality_mask)
y_list.append(sign)
else:
failed_count += 1
if not X_list:
print(f"\n❌ No valid sequences extracted!")
print(f"Failed to process: {failed_count}/{len(results)} files")
print("\nTroubleshooting tips:")
print("1. Check that parquet files contain 'left_hand', 'right_hand', or 'face' types")
print("2. Verify files have at least 3 frames")
print("3. Ensure landmark data is not all NaN")
return
print(f"\n✓ Successfully processed: {len(X_list)}/{len(results)} files")
print(f"✗ Failed: {failed_count}/{len(results)} files")
X = np.stack(X_list)
frame_masks = np.stack(frame_masks_list)
modality_masks = np.stack(modality_masks_list)
print(f"\nExtracted {len(X):,} sequences")
print(f"Feature shape: {X.shape[1:]} (input_dim = {X.shape[2]})")
print(f"Modality mask shape: {modality_masks.shape}")
# Global normalization
X = np.clip(X, -30, 30)
mean = X.mean(axis=(0, 1), keepdims=True)
std = X.std(axis=(0, 1), keepdims=True) + 1e-8
X = (X - mean) / std
# Labels
le = LabelEncoder()
y = le.fit_transform(y_list)
# Filter rare classes
counts = Counter(y)
valid = [k for k, v in counts.items() if v >= MIN_SAMPLES_PER_CLASS]
mask = np.isin(y, valid)
X = X[mask]
frame_masks = frame_masks[mask]
modality_masks = modality_masks[mask]
y = y[mask]
le = LabelEncoder()
y = le.fit_transform(y)
print(f"After filtering: {len(X):,} samples | {len(le.classes_)} classes")
# Analyze modality usage
print("\nModality statistics:")
print(f" Sequences with left hand: {(modality_masks[:, :, 0].sum(axis=1) > 0).mean() * 100:.1f}%")
print(f" Sequences with right hand: {(modality_masks[:, :, 1].sum(axis=1) > 0).mean() * 100:.1f}%")
print(f" Sequences with face: {(modality_masks[:, :, 2].sum(axis=1) > 0).mean() * 100:.1f}%")
# Split
X_tr, X_te, fm_tr, fm_te, mm_tr, mm_te, y_tr, y_te = train_test_split(
X, frame_masks, modality_masks, y, test_size=0.15, stratify=y, random_state=42
)
# Dataset
class ASLMultiDataset(Dataset):
def __init__(self, X, frame_masks, modality_masks, y):
self.X = torch.from_numpy(X).float()
self.frame_masks = torch.from_numpy(frame_masks).bool()
self.modality_masks = torch.from_numpy(modality_masks).float()
self.y = torch.from_numpy(y).long()
def __len__(self):
return len(self.X)
def __getitem__(self, idx):
return self.X[idx], self.frame_masks[idx], self.modality_masks[idx], self.y[idx]
batch_size = 64 if device.type == 'cuda' else 32
train_loader = DataLoader(
ASLMultiDataset(X_tr, fm_tr, mm_tr, y_tr),
batch_size=batch_size, shuffle=True,
num_workers=4, pin_memory=device.type == 'cuda'
)
test_loader = DataLoader(
ASLMultiDataset(X_te, fm_te, mm_te, y_te),
batch_size=batch_size * 2, shuffle=False,
num_workers=4, pin_memory=device.type == 'cuda'
)
# Enhanced model
model = ModalityAwareTransformer(
input_dim=X.shape[2],
num_classes=len(le.classes_),
d_model=384,
nhead=8,
num_layers=5
).to(device)
print(f"\nModel parameters: {sum(p.numel() for p in model.parameters()):,}")
criterion = nn.CrossEntropyLoss(label_smoothing=0.05)
optimizer = optim.AdamW(model.parameters(), lr=4e-4, weight_decay=1e-4)
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10)
best_acc = 0.0
epochs = 70
print("\n" + "=" * 60)
print("TRAINING START")
print("=" * 60)
for epoch in range(epochs):
model.train()
total_loss = correct = total = 0
for x, frame_mask, modality_mask, yb in tqdm(train_loader, desc=f"Epoch {epoch + 1}", leave=False):
x = x.to(device)
frame_mask = frame_mask.to(device)
modality_mask = modality_mask.to(device)
yb = yb.to(device)
key_padding_mask = ~frame_mask
optimizer.zero_grad(set_to_none=True)
logits = model(x, modality_mask=modality_mask, key_padding_mask=key_padding_mask)
loss = criterion(logits, yb)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
total_loss += loss.item()
correct += (logits.argmax(-1) == yb).sum().item()
total += yb.size(0)
train_acc = correct / total * 100
# Eval
model.eval()
correct = total = 0
with torch.no_grad():
for x, frame_mask, modality_mask, yb in test_loader:
x = x.to(device)
frame_mask = frame_mask.to(device)
modality_mask = modality_mask.to(device)
yb = yb.to(device)
key_padding_mask = ~frame_mask
logits = model(x, modality_mask=modality_mask, key_padding_mask=key_padding_mask)
correct += (logits.argmax(-1) == yb).sum().item()
total += yb.size(0)
test_acc = correct / total * 100
scheduler.step()
print(f"[{epoch + 1:2d}/{epochs}] Loss: {total_loss / len(train_loader):.4f} | "
f"Train: {train_acc:.2f}% | Test: {test_acc:.2f}%", end="")
if test_acc > best_acc:
best_acc = test_acc
torch.save(model.state_dict(), "best_asl_modality_aware.pth")
print(" → saved")
else:
print()
print("\n" + "=" * 60)
print(f"TRAINING COMPLETE - Best test accuracy: {best_acc:.2f}%")
print("=" * 60)
if __name__ == "__main__":
main()