549 lines
18 KiB
Python
549 lines
18 KiB
Python
import os
|
|
import json
|
|
import math
|
|
import numpy as np
|
|
import polars as pl
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.optim as optim
|
|
|
|
from torch.utils.data import Dataset, DataLoader
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.preprocessing import LabelEncoder
|
|
from multiprocessing import Pool, cpu_count
|
|
from functools import partial
|
|
from tqdm import tqdm
|
|
from collections import Counter
|
|
|
|
# ===============================
|
|
# GPU CONFIGURATION
|
|
# ===============================
|
|
print("=" * 60)
|
|
print("GPU CONFIGURATION")
|
|
print("=" * 60)
|
|
|
|
if torch.cuda.is_available():
|
|
print(f"✓ CUDA available!")
|
|
print(f"✓ GPU: {torch.cuda.get_device_name(0)}")
|
|
device = torch.device('cuda:0')
|
|
torch.backends.cudnn.benchmark = True
|
|
torch.backends.cudnn.enabled = True
|
|
else:
|
|
print("✗ CUDA not available, using CPU")
|
|
device = torch.device('cpu')
|
|
|
|
print("=" * 60)
|
|
|
|
# ===============================
|
|
# SELECTED LANDMARK INDICES
|
|
# ===============================
|
|
IMPORTANT_FACE_INDICES = sorted(list(set([
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
|
|
55, 65, 66, 105, 107, 336, 296, 334,
|
|
33, 133, 160, 159, 158, 144, 145, 153,
|
|
362, 263, 387, 386, 385, 373, 374, 380,
|
|
1, 2, 98, 327,
|
|
61, 185, 40, 39, 37, 0, 267, 269, 270, 409,
|
|
291, 146, 91, 181, 84, 17, 314, 405, 321, 375,
|
|
78, 191, 80, 81, 82, 13, 312, 311, 310, 415,
|
|
308, 324, 318, 402, 317, 14, 87, 178, 88, 95
|
|
])))
|
|
|
|
NUM_FACE_POINTS = len(IMPORTANT_FACE_INDICES)
|
|
NUM_HAND_POINTS = 21 * 2
|
|
TOTAL_POINTS_PER_FRAME = NUM_HAND_POINTS + NUM_FACE_POINTS
|
|
|
|
|
|
# ===============================
|
|
# ENHANCED DATA EXTRACTION (POLARS)
|
|
# ===============================
|
|
def extract_multi_landmarks(path, min_valid_frames=3):
|
|
"""
|
|
Extract both hands + selected face landmarks with modality flags
|
|
Returns: dict with 'landmarks', 'left_hand_valid', 'right_hand_valid', 'face_valid'
|
|
"""
|
|
try:
|
|
df = pl.read_parquet(path)
|
|
seq = []
|
|
left_valid_frames = []
|
|
right_valid_frames = []
|
|
face_valid_frames = []
|
|
|
|
all_types = df.select("type").unique().to_series().to_list()
|
|
# Check if we have at least one of the required types
|
|
has_data = any(t in all_types for t in ["left_hand", "right_hand", "face"])
|
|
|
|
if not has_data:
|
|
return None
|
|
|
|
# Get all frames (might not start at 0)
|
|
frames = sorted(df.select("frame").unique().to_series().to_list())
|
|
|
|
if len(frames) < min_valid_frames:
|
|
return None
|
|
|
|
for frame in frames:
|
|
frame_df = df.filter(pl.col("frame") == frame)
|
|
frame_points = np.full((TOTAL_POINTS_PER_FRAME, 3), np.nan, dtype=np.float32)
|
|
|
|
pos = 0
|
|
left_valid = False
|
|
right_valid = False
|
|
face_valid = False
|
|
|
|
# Left hand (need at least 10 valid points)
|
|
left = frame_df.filter(pl.col("type") == "left_hand")
|
|
if left.height > 0:
|
|
valid_count = 0
|
|
for i in range(21):
|
|
row = left.filter(pl.col("landmark_index") == i)
|
|
if row.height > 0:
|
|
coords = row.select(["x", "y", "z"]).row(0)
|
|
if all(c is not None for c in coords):
|
|
frame_points[pos] = coords
|
|
valid_count += 1
|
|
pos += 1
|
|
left_valid = (valid_count >= 10)
|
|
else:
|
|
pos += 21
|
|
|
|
# Right hand (need at least 10 valid points)
|
|
right = frame_df.filter(pl.col("type") == "right_hand")
|
|
if right.height > 0:
|
|
valid_count = 0
|
|
for i in range(21):
|
|
row = right.filter(pl.col("landmark_index") == i)
|
|
if row.height > 0:
|
|
coords = row.select(["x", "y", "z"]).row(0)
|
|
if all(c is not None for c in coords):
|
|
frame_points[pos] = coords
|
|
valid_count += 1
|
|
pos += 1
|
|
right_valid = (valid_count >= 10)
|
|
else:
|
|
pos += 21
|
|
|
|
# Face (need at least 30% of selected landmarks)
|
|
face = frame_df.filter(pl.col("type") == "face")
|
|
if face.height > 0:
|
|
valid_count = 0
|
|
for idx in IMPORTANT_FACE_INDICES:
|
|
row = face.filter(pl.col("landmark_index") == idx)
|
|
if row.height > 0:
|
|
coords = row.select(["x", "y", "z"]).row(0)
|
|
if all(c is not None for c in coords):
|
|
frame_points[pos] = coords
|
|
valid_count += 1
|
|
pos += 1
|
|
face_valid = (valid_count >= len(IMPORTANT_FACE_INDICES) * 0.3)
|
|
|
|
# Accept frame if we have at least 20% valid data overall
|
|
valid_ratio = 1 - np.isnan(frame_points).mean()
|
|
if valid_ratio >= 0.20:
|
|
frame_points = np.nan_to_num(frame_points, nan=0.0)
|
|
seq.append(frame_points)
|
|
left_valid_frames.append(left_valid)
|
|
right_valid_frames.append(right_valid)
|
|
face_valid_frames.append(face_valid)
|
|
|
|
if len(seq) < min_valid_frames:
|
|
return None
|
|
|
|
return {
|
|
'landmarks': np.stack(seq),
|
|
'left_hand_valid': np.array(left_valid_frames),
|
|
'right_hand_valid': np.array(right_valid_frames),
|
|
'face_valid': np.array(face_valid_frames)
|
|
}
|
|
|
|
except Exception as e:
|
|
# Uncomment for debugging:
|
|
# print(f"Error processing {path}: {e}")
|
|
return None
|
|
|
|
|
|
def get_features_sequence(landmarks_data, max_frames=100):
|
|
"""
|
|
Enhanced feature extraction with separate modality processing
|
|
"""
|
|
if landmarks_data is None:
|
|
return None, None, None
|
|
|
|
landmarks_3d = landmarks_data['landmarks']
|
|
if len(landmarks_3d) == 0:
|
|
return None, None, None
|
|
|
|
T, N, _ = landmarks_3d.shape
|
|
|
|
# Separate modalities for independent normalization
|
|
left_hand = landmarks_3d[:, :21, :]
|
|
right_hand = landmarks_3d[:, 21:42, :]
|
|
face = landmarks_3d[:, 42:, :]
|
|
|
|
# Independent centering per modality
|
|
features_list = []
|
|
|
|
for modality, valid_mask in [
|
|
(left_hand, landmarks_data['left_hand_valid']),
|
|
(right_hand, landmarks_data['right_hand_valid']),
|
|
(face, landmarks_data['face_valid'])
|
|
]:
|
|
# Center on modality-specific mean
|
|
valid_frames = modality[valid_mask] if valid_mask.any() else modality
|
|
if len(valid_frames) > 0:
|
|
center = np.mean(valid_frames, axis=(0, 1), keepdims=True)
|
|
spread = np.std(valid_frames, axis=(0, 1), keepdims=True).max()
|
|
else:
|
|
center = 0
|
|
spread = 1
|
|
|
|
modality_norm = (modality - center) / max(spread, 1e-6)
|
|
flat = modality_norm.reshape(T, -1)
|
|
|
|
# Deltas
|
|
deltas = np.zeros_like(flat)
|
|
if T > 1:
|
|
deltas[1:] = flat[1:] - flat[:-1]
|
|
|
|
features_list.append(flat)
|
|
features_list.append(deltas)
|
|
|
|
# Combine all modalities
|
|
features = np.concatenate(features_list, axis=1)
|
|
|
|
# Create modality availability mask (which frames have which modalities)
|
|
modality_mask = np.stack([
|
|
landmarks_data['left_hand_valid'],
|
|
landmarks_data['right_hand_valid'],
|
|
landmarks_data['face_valid']
|
|
], axis=1).astype(np.float32) # (T, 3)
|
|
|
|
# Pad/truncate
|
|
if T < max_frames:
|
|
pad = np.zeros((max_frames - T, features.shape[1]), dtype=np.float32)
|
|
features = np.concatenate([features, pad], axis=0)
|
|
|
|
mask_pad = np.zeros((max_frames - T, 3), dtype=np.float32)
|
|
modality_mask = np.concatenate([modality_mask, mask_pad], axis=0)
|
|
|
|
frame_mask = np.zeros(max_frames, dtype=bool)
|
|
frame_mask[:T] = True
|
|
else:
|
|
features = features[:max_frames]
|
|
modality_mask = modality_mask[:max_frames]
|
|
frame_mask = np.ones(max_frames, dtype=bool)
|
|
|
|
features = np.nan_to_num(features, nan=0.0, posinf=0.0, neginf=0.0)
|
|
features = np.clip(features, -30, 30)
|
|
|
|
return features.astype(np.float32), frame_mask, modality_mask
|
|
|
|
|
|
def process_row(row_data, base_path, max_frames=100):
|
|
"""Process a single row - expects tuple of (path, sign)"""
|
|
path_rel, sign = row_data
|
|
path = os.path.join(base_path, path_rel)
|
|
if not os.path.exists(path):
|
|
return None, None, None, None
|
|
|
|
try:
|
|
lm_data = extract_multi_landmarks(path)
|
|
if lm_data is None:
|
|
return None, None, None, None
|
|
|
|
feat, frame_mask, modality_mask = get_features_sequence(lm_data, max_frames)
|
|
if feat is None:
|
|
return None, None, None, None
|
|
|
|
return feat, frame_mask, modality_mask, sign
|
|
|
|
except Exception:
|
|
return None, None, None, None
|
|
|
|
|
|
# ===============================
|
|
# ENHANCED MODEL WITH MODALITY AWARENESS
|
|
# ===============================
|
|
class PositionalEncoding(nn.Module):
|
|
def __init__(self, d_model, max_len=128):
|
|
super().__init__()
|
|
pe = torch.zeros(max_len, d_model)
|
|
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
|
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
|
pe[:, 0::2] = torch.sin(position * div_term)
|
|
pe[:, 1::2] = torch.cos(position * div_term)
|
|
self.register_buffer('pe', pe.unsqueeze(0))
|
|
|
|
def forward(self, x):
|
|
return x + self.pe[:, :x.size(1)]
|
|
|
|
|
|
class ModalityAwareTransformer(nn.Module):
|
|
def __init__(self, input_dim, num_classes, d_model=384, nhead=8, num_layers=5):
|
|
super().__init__()
|
|
|
|
# Main projection
|
|
self.proj = nn.Linear(input_dim, d_model)
|
|
|
|
# Modality embedding (3 modalities: left_hand, right_hand, face)
|
|
self.modality_embed = nn.Linear(3, d_model)
|
|
|
|
self.norm_in = nn.LayerNorm(d_model)
|
|
self.pos = PositionalEncoding(d_model)
|
|
|
|
enc_layer = nn.TransformerEncoderLayer(
|
|
d_model=d_model,
|
|
nhead=nhead,
|
|
dim_feedforward=d_model * 4,
|
|
dropout=0.15,
|
|
activation='gelu',
|
|
batch_first=True,
|
|
norm_first=True
|
|
)
|
|
self.encoder = nn.TransformerEncoder(enc_layer, num_layers=num_layers)
|
|
|
|
self.head = nn.Sequential(
|
|
nn.LayerNorm(d_model),
|
|
nn.Dropout(0.25),
|
|
nn.Linear(d_model, num_classes)
|
|
)
|
|
|
|
def forward(self, x, modality_mask=None, key_padding_mask=None):
|
|
# Project features
|
|
x = self.proj(x)
|
|
|
|
# Add modality information if available
|
|
if modality_mask is not None:
|
|
mod_embed = self.modality_embed(modality_mask)
|
|
x = x + mod_embed
|
|
|
|
x = self.norm_in(x)
|
|
x = self.pos(x)
|
|
x = self.encoder(x, src_key_padding_mask=key_padding_mask)
|
|
|
|
# Weighted average (giving more weight to frames with more valid modalities)
|
|
if modality_mask is not None:
|
|
weights = modality_mask.sum(dim=-1, keepdim=True) + 1e-6 # (B, T, 1)
|
|
weights = weights / weights.sum(dim=1, keepdim=True)
|
|
x = (x * weights).sum(dim=1)
|
|
else:
|
|
x = x.mean(dim=1)
|
|
|
|
return self.head(x)
|
|
|
|
|
|
def load_kaggle_asl_data(base_path):
|
|
"""Load training metadata using Polars"""
|
|
train_path = os.path.join(base_path, "train.csv")
|
|
train_df = pl.read_csv(train_path)
|
|
return train_df, None
|
|
|
|
|
|
# ===============================
|
|
# MAIN
|
|
# ===============================
|
|
def main():
|
|
base_path = "asl_kaggle"
|
|
max_frames = 100
|
|
MIN_SAMPLES_PER_CLASS = 5
|
|
|
|
print("\nLoading metadata...")
|
|
train_df, _ = load_kaggle_asl_data(base_path)
|
|
|
|
print(f"Total samples in train.csv: {train_df.height}")
|
|
|
|
# Convert to simple tuples for multiprocessing compatibility
|
|
rows = [(row[0], row[1]) for row in train_df.select(["path", "sign"]).iter_rows()]
|
|
|
|
print("\nProcessing sequences with BOTH hands + FACE (enhanced)...")
|
|
print("This may take a few minutes...")
|
|
|
|
with Pool(cpu_count()) as pool:
|
|
results = list(tqdm(
|
|
pool.imap(
|
|
partial(process_row, base_path=base_path, max_frames=max_frames),
|
|
rows,
|
|
chunksize=80
|
|
),
|
|
total=len(rows),
|
|
desc="Landmarks extraction"
|
|
))
|
|
|
|
X_list, frame_masks_list, modality_masks_list, y_list = [], [], [], []
|
|
failed_count = 0
|
|
for feat, frame_mask, modality_mask, sign in results:
|
|
if feat is not None and frame_mask is not None:
|
|
X_list.append(feat)
|
|
frame_masks_list.append(frame_mask)
|
|
modality_masks_list.append(modality_mask)
|
|
y_list.append(sign)
|
|
else:
|
|
failed_count += 1
|
|
|
|
if not X_list:
|
|
print(f"\n❌ No valid sequences extracted!")
|
|
print(f"Failed to process: {failed_count}/{len(results)} files")
|
|
print("\nTroubleshooting tips:")
|
|
print("1. Check that parquet files contain 'left_hand', 'right_hand', or 'face' types")
|
|
print("2. Verify files have at least 3 frames")
|
|
print("3. Ensure landmark data is not all NaN")
|
|
return
|
|
|
|
print(f"\n✓ Successfully processed: {len(X_list)}/{len(results)} files")
|
|
print(f"✗ Failed: {failed_count}/{len(results)} files")
|
|
|
|
X = np.stack(X_list)
|
|
frame_masks = np.stack(frame_masks_list)
|
|
modality_masks = np.stack(modality_masks_list)
|
|
|
|
print(f"\nExtracted {len(X):,} sequences")
|
|
print(f"Feature shape: {X.shape[1:]} (input_dim = {X.shape[2]})")
|
|
print(f"Modality mask shape: {modality_masks.shape}")
|
|
|
|
# Global normalization
|
|
X = np.clip(X, -30, 30)
|
|
mean = X.mean(axis=(0, 1), keepdims=True)
|
|
std = X.std(axis=(0, 1), keepdims=True) + 1e-8
|
|
X = (X - mean) / std
|
|
|
|
# Labels
|
|
le = LabelEncoder()
|
|
y = le.fit_transform(y_list)
|
|
|
|
# Filter rare classes
|
|
counts = Counter(y)
|
|
valid = [k for k, v in counts.items() if v >= MIN_SAMPLES_PER_CLASS]
|
|
mask = np.isin(y, valid)
|
|
|
|
X = X[mask]
|
|
frame_masks = frame_masks[mask]
|
|
modality_masks = modality_masks[mask]
|
|
y = y[mask]
|
|
|
|
le = LabelEncoder()
|
|
y = le.fit_transform(y)
|
|
|
|
print(f"After filtering: {len(X):,} samples | {len(le.classes_)} classes")
|
|
|
|
# Analyze modality usage
|
|
print("\nModality statistics:")
|
|
print(f" Sequences with left hand: {(modality_masks[:, :, 0].sum(axis=1) > 0).mean() * 100:.1f}%")
|
|
print(f" Sequences with right hand: {(modality_masks[:, :, 1].sum(axis=1) > 0).mean() * 100:.1f}%")
|
|
print(f" Sequences with face: {(modality_masks[:, :, 2].sum(axis=1) > 0).mean() * 100:.1f}%")
|
|
|
|
# Split
|
|
X_tr, X_te, fm_tr, fm_te, mm_tr, mm_te, y_tr, y_te = train_test_split(
|
|
X, frame_masks, modality_masks, y, test_size=0.15, stratify=y, random_state=42
|
|
)
|
|
|
|
# Dataset
|
|
class ASLMultiDataset(Dataset):
|
|
def __init__(self, X, frame_masks, modality_masks, y):
|
|
self.X = torch.from_numpy(X).float()
|
|
self.frame_masks = torch.from_numpy(frame_masks).bool()
|
|
self.modality_masks = torch.from_numpy(modality_masks).float()
|
|
self.y = torch.from_numpy(y).long()
|
|
|
|
def __len__(self):
|
|
return len(self.X)
|
|
|
|
def __getitem__(self, idx):
|
|
return self.X[idx], self.frame_masks[idx], self.modality_masks[idx], self.y[idx]
|
|
|
|
batch_size = 64 if device.type == 'cuda' else 32
|
|
|
|
train_loader = DataLoader(
|
|
ASLMultiDataset(X_tr, fm_tr, mm_tr, y_tr),
|
|
batch_size=batch_size, shuffle=True,
|
|
num_workers=4, pin_memory=device.type == 'cuda'
|
|
)
|
|
|
|
test_loader = DataLoader(
|
|
ASLMultiDataset(X_te, fm_te, mm_te, y_te),
|
|
batch_size=batch_size * 2, shuffle=False,
|
|
num_workers=4, pin_memory=device.type == 'cuda'
|
|
)
|
|
|
|
# Enhanced model
|
|
model = ModalityAwareTransformer(
|
|
input_dim=X.shape[2],
|
|
num_classes=len(le.classes_),
|
|
d_model=384,
|
|
nhead=8,
|
|
num_layers=5
|
|
).to(device)
|
|
|
|
print(f"\nModel parameters: {sum(p.numel() for p in model.parameters()):,}")
|
|
|
|
criterion = nn.CrossEntropyLoss(label_smoothing=0.05)
|
|
optimizer = optim.AdamW(model.parameters(), lr=4e-4, weight_decay=1e-4)
|
|
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10)
|
|
|
|
best_acc = 0.0
|
|
epochs = 70
|
|
|
|
print("\n" + "=" * 60)
|
|
print("TRAINING START")
|
|
print("=" * 60)
|
|
|
|
for epoch in range(epochs):
|
|
model.train()
|
|
total_loss = correct = total = 0
|
|
|
|
for x, frame_mask, modality_mask, yb in tqdm(train_loader, desc=f"Epoch {epoch + 1}", leave=False):
|
|
x = x.to(device)
|
|
frame_mask = frame_mask.to(device)
|
|
modality_mask = modality_mask.to(device)
|
|
yb = yb.to(device)
|
|
|
|
key_padding_mask = ~frame_mask
|
|
|
|
optimizer.zero_grad(set_to_none=True)
|
|
logits = model(x, modality_mask=modality_mask, key_padding_mask=key_padding_mask)
|
|
loss = criterion(logits, yb)
|
|
loss.backward()
|
|
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
|
optimizer.step()
|
|
|
|
total_loss += loss.item()
|
|
correct += (logits.argmax(-1) == yb).sum().item()
|
|
total += yb.size(0)
|
|
|
|
train_acc = correct / total * 100
|
|
|
|
# Eval
|
|
model.eval()
|
|
correct = total = 0
|
|
with torch.no_grad():
|
|
for x, frame_mask, modality_mask, yb in test_loader:
|
|
x = x.to(device)
|
|
frame_mask = frame_mask.to(device)
|
|
modality_mask = modality_mask.to(device)
|
|
yb = yb.to(device)
|
|
|
|
key_padding_mask = ~frame_mask
|
|
logits = model(x, modality_mask=modality_mask, key_padding_mask=key_padding_mask)
|
|
correct += (logits.argmax(-1) == yb).sum().item()
|
|
total += yb.size(0)
|
|
|
|
test_acc = correct / total * 100
|
|
scheduler.step()
|
|
|
|
print(f"[{epoch + 1:2d}/{epochs}] Loss: {total_loss / len(train_loader):.4f} | "
|
|
f"Train: {train_acc:.2f}% | Test: {test_acc:.2f}%", end="")
|
|
|
|
if test_acc > best_acc:
|
|
best_acc = test_acc
|
|
torch.save(model.state_dict(), "best_asl_modality_aware.pth")
|
|
print(" → saved")
|
|
else:
|
|
print()
|
|
|
|
print("\n" + "=" * 60)
|
|
print(f"TRAINING COMPLETE - Best test accuracy: {best_acc:.2f}%")
|
|
print("=" * 60)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main() |