# =============================== # IMPORTS # =============================== import os import json import math import numpy as np import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import Dataset, DataLoader from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from multiprocessing import Pool, cpu_count from functools import partial from tqdm import tqdm from collections import Counter # =============================== # DATA LOADING # =============================== def load_kaggle_asl_data(base_path): train_df = pd.read_csv(os.path.join(base_path, "train.csv")) with open(os.path.join(base_path, "sign_to_prediction_index_map.json")) as f: sign_to_idx = json.load(f) return train_df, sign_to_idx def extract_hand_landmarks_from_parquet(path): try: df = pd.read_parquet(path) left = df[df["type"] == "left_hand"] right = df[df["type"] == "right_hand"] hand = left if len(left) >= len(right) else right if len(hand) == 0: return None frames = sorted(hand['frame'].unique()) landmarks_seq = [] for frame in frames: lm_frame = hand[hand['frame'] == frame] lm_list = [] for i in range(21): lm = lm_frame[lm_frame['landmark_index'] == i] if len(lm) == 0: lm_list.append([0.0, 0.0, 0.0]) else: lm_list.append([ float(lm['x'].iloc[0]), float(lm['y'].iloc[0]), float(lm['z'].iloc[0]) ]) landmarks_seq.append(lm_list) return np.array(landmarks_seq, dtype=np.float32) except: return None def get_features_sequence(landmarks_seq, max_frames=100): if landmarks_seq is None or len(landmarks_seq) == 0: return None, None # Center on wrist landmarks_seq = landmarks_seq - landmarks_seq[:, 0:1, :] # Scale using wrist → middle finger MCP distance scale = np.linalg.norm(landmarks_seq[:, 0] - landmarks_seq[:, 9], axis=1, keepdims=True) scale = np.maximum(scale, 1e-6) landmarks_seq = landmarks_seq / scale[:, np.newaxis, :] # Finger curl distances tips = [4, 8, 12, 16, 20] bases = [1, 5, 9, 13, 17] curl_features = [] for b, t in zip(bases, tips): curl_features.append(np.linalg.norm(landmarks_seq[:, t] - landmarks_seq[:, b], axis=1)) curl_features = np.stack(curl_features, axis=1) # (T,5) # Temporal deltas deltas = np.zeros_like(landmarks_seq) deltas[1:] = landmarks_seq[1:] - landmarks_seq[:-1] # Flatten features along last axis seq = np.concatenate([landmarks_seq, deltas, curl_features[:, :, np.newaxis]], axis=2) seq = seq.reshape(seq.shape[0], -1) # (T, feature_dim) # Pad or truncate to max_frames T, F = seq.shape if T < max_frames: pad = np.zeros((max_frames - T, F), dtype=np.float32) seq = np.concatenate([seq, pad], axis=0) elif T > max_frames: seq = seq[:max_frames, :] # Mask valid_mask = np.zeros(max_frames, dtype=bool) valid_mask[:min(T, max_frames)] = True return seq.astype(np.float32), valid_mask def process_row(row, base_path, max_frames=100): path = os.path.join(base_path, row["path"]) if not os.path.exists(path): return None, None, None try: lm = extract_hand_landmarks_from_parquet(path) if lm is None: return None, None, None feat, mask = get_features_sequence(lm, max_frames) if feat is None: return None, None, None return feat, mask, row["sign"] except: return None, None, None # =============================== # TRANSFORMER MODEL # =============================== class PositionalEncoding(nn.Module): def __init__(self, d_model, max_len=128): super().__init__() pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) self.register_buffer('pe', pe.unsqueeze(0)) def forward(self, x): return x + self.pe[:, :x.size(1)] class TransformerASL(nn.Module): def __init__(self, input_dim=63, num_classes=250, d_model=192, nhead=6, num_layers=4): super().__init__() self.proj = nn.Linear(input_dim, d_model) self.norm_in = nn.LayerNorm(d_model) self.pos = PositionalEncoding(d_model) enc_layer = nn.TransformerEncoderLayer( d_model=d_model, nhead=nhead, dim_feedforward=d_model * 4, dropout=0.15, activation='gelu', batch_first=True, norm_first=True ) self.encoder = nn.TransformerEncoder(enc_layer, num_layers=num_layers) self.head = nn.Sequential( nn.LayerNorm(d_model), nn.Dropout(0.25), nn.Linear(d_model, num_classes) ) def forward(self, x, key_padding_mask=None): x = self.proj(x) x = self.norm_in(x) x = self.pos(x) x = self.encoder(x, src_key_padding_mask=key_padding_mask) x = x.mean(dim=1) return self.head(x) def create_padding_mask(lengths, max_len): return torch.arange(max_len, device=lengths.device)[None, :] >= lengths[:, None] # =============================== # MAIN TRAINING # =============================== def main(): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") if device.type == "cuda": print("GPU:", torch.cuda.get_device_name(0)) base_path = "asl_kaggle" # ← set your dataset path max_frames = 100 MIN_SAMPLES_PER_CLASS = 6 print("Loading metadata...") train_df, sign_to_idx = load_kaggle_asl_data(base_path) rows = [row for _, row in train_df.iterrows()] print("Processing landmark sequences...") with Pool(cpu_count()) as pool: results = list(tqdm( pool.imap( partial(process_row, base_path=base_path, max_frames=max_frames), rows ), total=len(rows), desc="Extracting landmarks" )) X_list, masks_list, y_list = [], [], [] for feat, mask, sign in results: if feat is not None and feat.shape[0] == max_frames: X_list.append(feat) masks_list.append(mask) y_list.append(sign) if not X_list: print("No valid sequences found. Check parquet files / paths.") return X = np.stack(X_list) masks = np.stack(masks_list) print(f"Loaded {len(X)} sequences | shape: {X.shape}") # Global normalization X = np.clip(X, -5.0, 5.0) mean = X.mean(axis=(0, 1), keepdims=True) std = X.std(axis=(0, 1), keepdims=True) + 1e-8 X = (X - mean) / std le = LabelEncoder() y = le.fit_transform(y_list) counts = Counter(y) valid_classes = [cls for cls, cnt in counts.items() if cnt >= MIN_SAMPLES_PER_CLASS] mask_valid = np.isin(y, valid_classes) X = X[mask_valid] masks = masks[mask_valid] y = y[mask_valid] le = LabelEncoder() y = le.fit_transform(y) print(f"{len(X)} samples | {len(le.classes_)} classes after filtering") # Train-test split X_train, X_test, masks_train, masks_test, y_train, y_test = train_test_split( X, masks, y, test_size=0.15, stratify=y, random_state=42 ) # Dataset class ASLSequenceDataset(Dataset): def __init__(self, X, masks, y): self.X = torch.from_numpy(X).float() self.masks = torch.from_numpy(masks) self.y = torch.from_numpy(y).long() def __len__(self): return len(self.X) def __getitem__(self, idx): return self.X[idx], self.masks[idx], self.y[idx] train_loader = DataLoader( ASLSequenceDataset(X_train, masks_train, y_train), batch_size=64, shuffle=True, num_workers=4, pin_memory=True ) test_loader = DataLoader( ASLSequenceDataset(X_test, masks_test, y_test), batch_size=96, shuffle=False, num_workers=4, pin_memory=True ) model = TransformerASL( input_dim=X.shape[2], num_classes=len(le.classes_), d_model=192, nhead=6, num_layers=4 ).to(device) print(f"Model parameters: {sum(p.numel() for p in model.parameters()):,}") criterion = nn.CrossEntropyLoss(label_smoothing=0.05) optimizer = optim.AdamW(model.parameters(), lr=5e-4, weight_decay=1e-4) scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10) # Training best_acc = 0.0 patience = 15 wait = 0 epochs = 70 for epoch in range(epochs): model.train() total_loss = 0 correct = total = 0 for x, mask, yb in tqdm(train_loader, desc="Train"): x, mask, yb = x.to(device), mask.to(device), yb.to(device) key_mask = ~mask # True where padding optimizer.zero_grad(set_to_none=True) logits = model(x, key_padding_mask=key_mask) loss = criterion(logits, yb) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=0.8) optimizer.step() total_loss += loss.item() correct += (logits.argmax(-1) == yb).sum().item() total += yb.size(0) train_acc = correct / total * 100 # Eval model.eval() correct = total = 0 with torch.no_grad(): for x, mask, yb in test_loader: x, mask, yb = x.to(device), mask.to(device), yb.to(device) key_mask = ~mask logits = model(x, key_padding_mask=key_mask) correct += (logits.argmax(-1) == yb).sum().item() total += yb.size(0) test_acc = correct / total * 100 print(f"[{epoch+1:2d}/{epochs}] Loss: {total_loss/len(train_loader):.4f} | " f"Train: {train_acc:.2f}% | Test: {test_acc:.2f}%") scheduler.step() if test_acc > best_acc: best_acc = test_acc wait = 0 torch.save({ 'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'label_encoder_classes': le.classes_, 'acc': best_acc, 'epoch': epoch }, "best_asl_transformer.pth") print(" → New best saved") else: wait += 1 if wait >= patience: print("Early stopping") break print(f"\nBest test accuracy: {best_acc:.2f}%") if __name__ == "__main__": main()