# =============================== # IMPORTS # =============================== import os import json import math import numpy as np import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import Dataset, DataLoader from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from multiprocessing import Pool, cpu_count from functools import partial from tqdm import tqdm # =============================== # DEVICE # =============================== device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") if device.type == "cuda": print("GPU:", torch.cuda.get_device_name(0)) torch.backends.cudnn.benchmark = True # =============================== # DATA LOADING # =============================== def load_kaggle_asl_data(base_path): train_df = pd.read_csv(os.path.join(base_path, "train.csv")) with open(os.path.join(base_path, "sign_to_prediction_index_map.json")) as f: sign_to_idx = json.load(f) return train_df, sign_to_idx def extract_hand_landmarks_from_parquet(path): try: df = pd.read_parquet(path) hand = df[df["type"].isin(["left_hand", "right_hand"])] if len(hand) == 0: return None frames = sorted(hand['frame'].unique()) landmarks_seq = [] for frame in frames: lm_frame = hand[hand['frame'] == frame] lm_list = [] for i in range(21): lm = lm_frame[lm_frame['landmark_index'] == i] if len(lm) == 0: lm_list.append([0.0, 0.0, 0.0]) else: lm_list.append([lm['x'].values[0], lm['y'].values[0], lm['z'].values[0]]) landmarks_seq.append(lm_list) return np.array(landmarks_seq, dtype=np.float32) # (T, 21, 3) except: return None def get_features_sequence(landmarks_seq, max_frames=96): if landmarks_seq is None or len(landmarks_seq) == 0: return None # Center on wrist (landmark 0) landmarks_seq = landmarks_seq - landmarks_seq[:, 0:1, :] # Rough scale normalization (using index finger length as reference) scale = np.linalg.norm(landmarks_seq[:, 8] - landmarks_seq[:, 5], axis=1, keepdims=True) scale = np.maximum(scale, 1e-6) landmarks_seq /= scale # Flatten → (T, 63) seq = landmarks_seq.reshape(landmarks_seq.shape[0], -1) # Pad / truncate if len(seq) < max_frames: pad = np.zeros((max_frames - len(seq), seq.shape[1]), dtype=np.float32) seq = np.concatenate([seq, pad], axis=0) else: seq = seq[:max_frames] return seq.astype(np.float32) def process_row(row, base_path, max_frames=96): path = os.path.join(base_path, row['path']) if not os.path.exists(path): return None, None lm = extract_hand_landmarks_from_parquet(path) feat = get_features_sequence(lm, max_frames) if feat is None: return None, None return feat, row['sign'] # =============================== # LOAD & PROCESS (with progress) # =============================== base_path = "asl_kaggle" # ← change if needed train_df, sign_to_idx = load_kaggle_asl_data(base_path) print("Processing videos...") rows = [row for _, row in train_df.iterrows()] with Pool(cpu_count()) as pool: results = list(tqdm(pool.imap( partial(process_row, base_path=base_path, max_frames=96), rows ), total=len(rows))) X, y = [], [] for feat, sign in results: if feat is not None: X.append(feat) y.append(sign) X = np.stack(X) # (N, T, 63) print(f"Loaded {len(X)} valid samples | shape: {X.shape}") # Global normalization (very important!) scaler = StandardScaler() X_reshaped = X.reshape(-1, X.shape[-1]) X_reshaped = scaler.fit_transform(X_reshaped) X = X_reshaped.reshape(X.shape) # =============================== # LABELS # =============================== from sklearn.preprocessing import LabelEncoder le = LabelEncoder() y = le.fit_transform(y) num_classes = len(le.classes_) print(f"Classes: {num_classes}") # =============================== # SPLIT # =============================== X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.15, stratify=y, random_state=42 ) # =============================== # DATASET + DATALOADER # =============================== class ASLSequenceDataset(Dataset): def __init__(self, X, y): self.X = torch.from_numpy(X).float() self.y = torch.from_numpy(y).long() def __len__(self): return len(self.X) def __getitem__(self, idx): return self.X[idx], self.y[idx] train_loader = DataLoader(ASLSequenceDataset(X_train, y_train), batch_size=64, shuffle=True, num_workers=4, pin_memory=True) test_loader = DataLoader(ASLSequenceDataset(X_test, y_test), batch_size=96, shuffle=False, num_workers=4, pin_memory=True) # =============================== # MODEL # =============================== class PositionalEncoding(nn.Module): def __init__(self, d_model, max_len=128): super().__init__() pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) self.register_buffer('pe', pe.unsqueeze(0)) def forward(self, x): return x + self.pe[:, :x.size(1)] class TransformerASL(nn.Module): def __init__(self, input_dim=63, num_classes=250, d_model=192, nhead=6, num_layers=4): super().__init__() self.proj = nn.Linear(input_dim, d_model) self.norm_in = nn.LayerNorm(d_model) self.pos = PositionalEncoding(d_model) encoder_layer = nn.TransformerEncoderLayer( d_model=d_model, nhead=nhead, dim_feedforward=d_model*4, dropout=0.15, activation='gelu', batch_first=True, norm_first=True ) self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) self.head = nn.Sequential( nn.LayerNorm(d_model), nn.Dropout(0.25), nn.Linear(d_model, num_classes) ) def forward(self, x, key_padding_mask=None): x = self.proj(x) x = self.norm_in(x) x = self.pos(x) x = self.encoder(x, src_key_padding_mask=key_padding_mask) x = x.mean(dim=1) # global average pooling x = self.head(x) return x model = TransformerASL(input_dim=63, num_classes=num_classes).to(device) print(f"Model parameters: {sum(p.numel() for p in model.parameters()):,}") # =============================== # TRAINING SETUP # =============================== criterion = nn.CrossEntropyLoss(label_smoothing=0.05) optimizer = optim.AdamW(model.parameters(), lr=8e-4, weight_decay=1e-4, betas=(0.9, 0.98)) scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=15, T_mult=2) # =============================== # TRAIN / EVAL # =============================== def create_padding_mask(seq_len, max_len): # True = ignore this position return torch.arange(max_len, device=device)[None, :] >= seq_len[:, None] def train_epoch(): model.train() total_loss = 0 correct = 0 total = 0 for x, y in tqdm(train_loader, desc="Train"): x, y = x.to(device), y.to(device) # Very simple length heuristic (can be improved later) real_lengths = (x.abs().sum(dim=2) > 1e-6).sum(dim=1) mask = create_padding_mask(real_lengths, x.size(1)) optimizer.zero_grad(set_to_none=True) logits = model(x, key_padding_mask=mask) loss = criterion(logits, y) loss.backward() # STRONG clipping — very important for landmarks grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=0.8) optimizer.step() total_loss += loss.item() correct += (logits.argmax(dim=-1) == y).sum().item() total += y.size(0) # Debug exploding gradients if torch.isnan(loss) or grad_norm > 50: print(f"WARNING - NaN or huge grad! norm={grad_norm:.2f}") return total_loss / len(train_loader), correct / total * 100 @torch.no_grad() def evaluate(): model.eval() correct = 0 total = 0 for x, y in test_loader: x, y = x.to(device), y.to(device) real_lengths = (x.abs().sum(dim=2) > 1e-6).sum(dim=1) mask = create_padding_mask(real_lengths, x.size(1)) logits = model(x, key_padding_mask=mask) correct += (logits.argmax(dim=-1) == y).sum().item() total += y.size(0) return correct / total * 100 # =============================== # TRAINING LOOP # =============================== best_acc = 0 patience = 18 wait = 0 epochs = 80 for epoch in range(epochs): loss, train_acc = train_epoch() test_acc = evaluate() print(f"[{epoch+1:2d}/{epochs}] loss: {loss:.4f} | train: {train_acc:.2f}% | test: {test_acc:.2f}%") scheduler.step() if test_acc > best_acc: best_acc = test_acc wait = 0 torch.save({ 'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'scaler': scaler, 'label_encoder_classes': le.classes_ }, "best_asl_transformer.pth") print("→ Saved new best model") else: wait += 1 if wait >= patience: print("Early stopping triggered") break print(f"\nBest test accuracy achieved: {best_acc:.2f}%")