# =============================== # IMPORTS # =============================== import os import json import math import time import numpy as np import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import Dataset, DataLoader from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from multiprocessing import Pool, cpu_count from functools import partial # =============================== # GPU SETUP # =============================== device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") if device.type == "cuda": print("GPU:", torch.cuda.get_device_name(0)) torch.backends.cudnn.benchmark = True # =============================== # DATA LOADING & FEATURE EXTRACTION # =============================== def load_kaggle_asl_data(base_path): train_df = pd.read_csv(os.path.join(base_path, "train.csv")) with open(os.path.join(base_path, "sign_to_prediction_index_map.json")) as f: sign_to_idx = json.load(f) return train_df, sign_to_idx def extract_hand_landmarks_from_parquet(path): df = pd.read_parquet(path) left = df[df["type"] == "left_hand"] right = df[df["type"] == "right_hand"] hand = None if len(left) > 0: hand = left elif len(right) > 0: hand = right else: return None # Keep all frames frames = sorted(hand['frame'].unique()) landmarks_seq = [] for frame in frames: lm_frame = hand[hand['frame'] == frame] lm_list = [] for i in range(21): lm = lm_frame[lm_frame['landmark_index'] == i] if len(lm) == 0: lm_list.append([0.0, 0.0, 0.0]) else: lm_list.append([ lm['x'].mean(), lm['y'].mean(), lm['z'].mean() ]) landmarks_seq.append(lm_list) return np.array(landmarks_seq, dtype=np.float32) # (T, 21, 3) def get_features_sequence(landmarks_seq, max_frames=100): if landmarks_seq is None: return None # Center on wrist points = landmarks_seq - landmarks_seq[:, 0:1, :] scale = np.linalg.norm(points[:, 9, :], axis=1, keepdims=True) scale[scale < 1e-6] = 1.0 points /= scale[:, np.newaxis, :] # Flatten per frame frames = points.reshape(points.shape[0], -1) # Pad or truncate if frames.shape[0] < max_frames: pad = np.zeros((max_frames - frames.shape[0], frames.shape[1]), dtype=np.float32) frames = np.vstack([frames, pad]) else: frames = frames[:max_frames] return frames # (max_frames, 63) def process_row(row, base_path, max_frames=100): path = os.path.join(base_path, row['path']) if not os.path.exists(path): return None, None try: lm_seq = extract_hand_landmarks_from_parquet(path) feat_seq = get_features_sequence(lm_seq, max_frames) return feat_seq, row['sign'] except: return None, None # =============================== # LOAD + PROCESS DATA # =============================== base_path = "asl_kaggle" train_df, sign_to_idx = load_kaggle_asl_data(base_path) rows = [row for _, row in train_df.iterrows()] X, y = [], [] func = partial(process_row, base_path=base_path, max_frames=100) with Pool(cpu_count()) as pool: for feat_seq, sign in pool.map(func, rows): if feat_seq is not None: X.append(feat_seq) y.append(sign) X = np.stack(X) # (N, T, 63) y = np.array(y) print("Samples:", len(X)) print("Sequence shape:", X.shape[1:]) # =============================== # LABEL ENCODING # =============================== le = LabelEncoder() y = le.fit_transform(y) num_classes = len(le.classes_) print("Num classes:", num_classes) # =============================== # SPLIT # =============================== X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, stratify=y, random_state=42 ) # =============================== # DATASET # =============================== class ASLSequenceDataset(Dataset): def __init__(self, X, y): self.X = torch.tensor(X, dtype=torch.float32) self.y = torch.tensor(y, dtype=torch.long) def __len__(self): return len(self.X) def __getitem__(self, idx): return self.X[idx], self.y[idx] train_loader = DataLoader(ASLSequenceDataset(X_train, y_train), batch_size=64, shuffle=True, pin_memory=True) test_loader = DataLoader(ASLSequenceDataset(X_test, y_test), batch_size=64, shuffle=False, pin_memory=True) # =============================== # TRANSFORMER MODEL # =============================== class PositionalEncoding(nn.Module): def __init__(self, d_model, max_len=100): super().__init__() pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0)/d_model)) pe[:, 0::2] = torch.sin(position*div_term) pe[:, 1::2] = torch.cos(position*div_term) self.register_buffer('pe', pe.unsqueeze(0)) def forward(self, x): return x + self.pe[:, :x.size(1), :] class TransformerASL(nn.Module): def __init__(self, input_dim, num_classes, d_model=256, nhead=8, num_layers=4): super().__init__() self.proj = nn.Linear(input_dim, d_model) self.norm = nn.LayerNorm(d_model) self.pos = PositionalEncoding(d_model) encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=1024, dropout=0.1, activation='gelu', batch_first=True, norm_first=True) self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) self.fc = nn.Sequential( nn.Linear(d_model, 512), nn.BatchNorm1d(512), nn.GELU(), nn.Dropout(0.3), nn.Linear(512, num_classes) ) def forward(self, x): x = self.proj(x) x = self.norm(x) x = self.pos(x) x = self.encoder(x) # (B, T, d_model) x = x.mean(dim=1) # temporal average x = self.fc(x) return x model = TransformerASL(input_dim=X.shape[2], num_classes=num_classes).to(device) print("Parameters:", sum(p.numel() for p in model.parameters())) # =============================== # TRAIN SETUP # =============================== criterion = nn.CrossEntropyLoss(label_smoothing=0.1) optimizer = optim.AdamW(model.parameters(), lr=3e-4, weight_decay=1e-4) scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10) # =============================== # TRAIN / EVAL FUNCTIONS # =============================== def train_epoch(): model.train() total, correct, loss_sum = 0, 0, 0 for x, y in train_loader: x, y = x.to(device), y.to(device) optimizer.zero_grad(set_to_none=True) logits = model(x) loss = criterion(logits, y) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() loss_sum += loss.item() correct += (logits.argmax(1) == y).sum().item() total += y.size(0) return loss_sum/len(train_loader), 100*correct/total @torch.no_grad() def evaluate(): model.eval() total, correct = 0, 0 for x, y in test_loader: x, y = x.to(device), y.to(device) logits = model(x) correct += (logits.argmax(1) == y).sum().item() total += y.size(0) return 100*correct/total # =============================== # TRAIN LOOP # =============================== best_acc = 0 patience = 15 wait = 0 epochs = 50 for epoch in range(epochs): loss, train_acc = train_epoch() test_acc = evaluate() scheduler.step() print(f"Epoch {epoch+1}/{epochs} | Loss {loss:.4f} | Train {train_acc:.2f}% | Test {test_acc:.2f}%") if test_acc > best_acc: best_acc = test_acc wait = 0 torch.save({"model": model.state_dict(), "label_encoder": le}, "asl_transformer_full.pth") else: wait += 1 if wait >= patience: print("Early stopping") break print("Best accuracy:", best_acc)