import os import json import math import numpy as np import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import Dataset, DataLoader from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from multiprocessing import Pool, cpu_count from functools import partial from tqdm import tqdm from collections import Counter # =============================== # GPU CONFIGURATION # =============================== print("=" * 60) print("GPU CONFIGURATION") print("=" * 60) if torch.cuda.is_available(): print(f"✓ CUDA available!") print(f"✓ GPU: {torch.cuda.get_device_name(0)}") device = torch.device('cuda:0') torch.backends.cudnn.benchmark = True else: print("✗ CUDA not available, using CPU") device = torch.device('cpu') print("=" * 60) # =============================== # DATA LOADING WITH NaN HANDLING # =============================== def load_kaggle_asl_data(base_path): train_df = pd.read_csv(os.path.join(base_path, "train.csv")) with open(os.path.join(base_path, "sign_to_prediction_index_map.json")) as f: sign_to_idx = json.load(f) return train_df, sign_to_idx def extract_hand_landmarks_from_parquet(path): """Extract hand landmarks, handling NaN values properly""" try: df = pd.read_parquet(path) # Get hand data left = df[df["type"] == "left_hand"] right = df[df["type"] == "right_hand"] # Choose hand with more non-NaN data left_valid = left[['x', 'y', 'z']].notna().all(axis=1).sum() right_valid = right[['x', 'y', 'z']].notna().all(axis=1).sum() if left_valid == 0 and right_valid == 0: return None # No valid hand data hand = left if left_valid >= right_valid else right if len(hand) == 0: return None # Get frames with valid data frames = sorted(hand['frame'].unique()) landmarks_seq = [] for frame in frames: lm_frame = hand[hand['frame'] == frame] # Check if this frame has valid data valid_rows = lm_frame[['x', 'y', 'z']].notna().all(axis=1) if valid_rows.sum() < 10: # Need at least 10 valid landmarks continue lm_list = [] frame_has_data = False for i in range(21): lm = lm_frame[lm_frame['landmark_index'] == i] if len(lm) == 0: lm_list.append([0.0, 0.0, 0.0]) else: x = lm['x'].iloc[0] y = lm['y'].iloc[0] z = lm['z'].iloc[0] # Check for NaN if pd.isna(x) or pd.isna(y) or pd.isna(z): lm_list.append([0.0, 0.0, 0.0]) else: lm_list.append([float(x), float(y), float(z)]) frame_has_data = True if frame_has_data: landmarks_seq.append(lm_list) if len(landmarks_seq) == 0: return None return np.array(landmarks_seq, dtype=np.float32) except Exception as e: return None def get_features_sequence(landmarks_seq, max_frames=100): """Extract features from landmark sequence""" if landmarks_seq is None or len(landmarks_seq) == 0: return None, None # Center on wrist landmarks_seq = landmarks_seq - landmarks_seq[:, 0:1, :] # Scale using wrist → middle finger MCP distance scale = np.linalg.norm(landmarks_seq[:, 0] - landmarks_seq[:, 9], axis=1, keepdims=True) scale = np.maximum(scale, 1e-6) landmarks_seq = landmarks_seq / scale[:, np.newaxis, :] # Replace any remaining NaN/Inf with 0 landmarks_seq = np.nan_to_num(landmarks_seq, nan=0.0, posinf=0.0, neginf=0.0) # Finger curl distances tips = [4, 8, 12, 16, 20] bases = [1, 5, 9, 13, 17] curl_features = [] for b, t in zip(bases, tips): curl = np.linalg.norm(landmarks_seq[:, t] - landmarks_seq[:, b], axis=1) curl_features.append(curl) curl_features = np.stack(curl_features, axis=1) # Temporal deltas deltas = np.zeros_like(landmarks_seq) deltas[1:] = landmarks_seq[1:] - landmarks_seq[:-1] # Flatten features seq = np.concatenate([landmarks_seq, deltas, curl_features[:, :, np.newaxis]], axis=2) seq = seq.reshape(seq.shape[0], -1) # Pad or truncate T, F = seq.shape if T < max_frames: pad = np.zeros((max_frames - T, F), dtype=np.float32) seq = np.concatenate([seq, pad], axis=0) elif T > max_frames: seq = seq[:max_frames, :] # Create mask valid_mask = np.zeros(max_frames, dtype=bool) valid_mask[:min(T, max_frames)] = True return seq.astype(np.float32), valid_mask def process_row(row, base_path, max_frames=100): """Process a single row""" path = os.path.join(base_path, row["path"]) if not os.path.exists(path): return None, None, None try: lm = extract_hand_landmarks_from_parquet(path) if lm is None: return None, None, None feat, mask = get_features_sequence(lm, max_frames) if feat is None: return None, None, None # Final NaN check if np.isnan(feat).any() or np.isinf(feat).any(): return None, None, None return feat, mask, row["sign"] except: return None, None, None # =============================== # TRANSFORMER MODEL # =============================== class PositionalEncoding(nn.Module): def __init__(self, d_model, max_len=128): super().__init__() pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) self.register_buffer('pe', pe.unsqueeze(0)) def forward(self, x): return x + self.pe[:, :x.size(1)] class TransformerASL(nn.Module): def __init__(self, input_dim=68, num_classes=250, d_model=256, nhead=8, num_layers=4): super().__init__() self.proj = nn.Linear(input_dim, d_model) self.norm_in = nn.LayerNorm(d_model) self.pos = PositionalEncoding(d_model) enc_layer = nn.TransformerEncoderLayer( d_model=d_model, nhead=nhead, dim_feedforward=d_model * 4, dropout=0.15, activation='gelu', batch_first=True, norm_first=True ) self.encoder = nn.TransformerEncoder(enc_layer, num_layers=num_layers) self.head = nn.Sequential( nn.LayerNorm(d_model), nn.Dropout(0.25), nn.Linear(d_model, num_classes) ) def forward(self, x, key_padding_mask=None): x = self.proj(x) x = self.norm_in(x) x = self.pos(x) x = self.encoder(x, src_key_padding_mask=key_padding_mask) x = x.mean(dim=1) return self.head(x) # =============================== # MAIN TRAINING # =============================== def main(): base_path = "asl_kaggle" max_frames = 100 MIN_SAMPLES_PER_CLASS = 6 print("\nLoading metadata...") train_df, sign_to_idx = load_kaggle_asl_data(base_path) print(f"Total sequences: {len(train_df)}") rows = [row for _, row in train_df.iterrows()] print("\nProcessing sequences with NaN handling...") with Pool(cpu_count()) as pool: results = list(tqdm( pool.imap( partial(process_row, base_path=base_path, max_frames=max_frames), rows, chunksize=100 ), total=len(rows), desc="Extracting landmarks" )) # Filter valid results X_list, masks_list, y_list = [], [], [] for feat, mask, sign in results: if feat is not None and feat.shape[0] == max_frames: X_list.append(feat) masks_list.append(mask) y_list.append(sign) print(f"\n✓ Valid sequences: {len(X_list)} out of {len(train_df)}") if not X_list: print("❌ No valid sequences found!") print("\nPossible issues:") print(" 1. Most files contain only NaN hand landmarks") print(" 2. Hand detection failed in most videos") print(" 3. Dataset might be corrupted") return X = np.stack(X_list) masks = np.stack(masks_list) print(f"Data shape: {X.shape}") # Global normalization X = np.clip(X, -5.0, 5.0) mean = X.mean(axis=(0, 1), keepdims=True) std = X.std(axis=(0, 1), keepdims=True) + 1e-8 X = (X - mean) / std # Encode labels le = LabelEncoder() y = le.fit_transform(y_list) # Filter classes with too few samples counts = Counter(y) valid_classes = [cls for cls, cnt in counts.items() if cnt >= MIN_SAMPLES_PER_CLASS] mask_valid = np.isin(y, valid_classes) X = X[mask_valid] masks = masks[mask_valid] y = y[mask_valid] # Re-encode le = LabelEncoder() y = le.fit_transform(y) print(f"Final dataset: {len(X)} samples | {len(le.classes_)} classes") # Train-test split X_train, X_test, masks_train, masks_test, y_train, y_test = train_test_split( X, masks, y, test_size=0.15, stratify=y, random_state=42 ) # Dataset class ASLSequenceDataset(Dataset): def __init__(self, X, masks, y): self.X = torch.from_numpy(X).float() self.masks = torch.from_numpy(masks) self.y = torch.from_numpy(y).long() def __len__(self): return len(self.X) def __getitem__(self, idx): return self.X[idx], self.masks[idx], self.y[idx] batch_size = 128 if device.type == 'cuda' else 64 train_loader = DataLoader( ASLSequenceDataset(X_train, masks_train, y_train), batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True ) test_loader = DataLoader( ASLSequenceDataset(X_test, masks_test, y_test), batch_size=batch_size * 2, shuffle=False, num_workers=4, pin_memory=True ) # Model model = TransformerASL( input_dim=X.shape[2], num_classes=len(le.classes_), d_model=256, nhead=8, num_layers=4 ).to(device) total_params = sum(p.numel() for p in model.parameters()) print(f"\nModel parameters: {total_params:,}") criterion = nn.CrossEntropyLoss(label_smoothing=0.05) optimizer = optim.AdamW(model.parameters(), lr=5e-4, weight_decay=1e-4) scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10) # Training best_acc = 0.0 patience = 15 wait = 0 epochs = 70 print("\nStarting training...") print("=" * 60) for epoch in range(epochs): model.train() total_loss = 0 correct = total = 0 for x, mask, yb in tqdm(train_loader, desc=f"Epoch {epoch + 1}/{epochs}"): x, mask, yb = x.to(device), mask.to(device), yb.to(device) key_mask = ~mask optimizer.zero_grad(set_to_none=True) logits = model(x, key_padding_mask=key_mask) loss = criterion(logits, yb) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=0.8) optimizer.step() total_loss += loss.item() correct += (logits.argmax(-1) == yb).sum().item() total += yb.size(0) train_acc = correct / total * 100 # Eval model.eval() correct = total = 0 with torch.no_grad(): for x, mask, yb in test_loader: x, mask, yb = x.to(device), mask.to(device), yb.to(device) key_mask = ~mask logits = model(x, key_padding_mask=key_mask) correct += (logits.argmax(-1) == yb).sum().item() total += yb.size(0) test_acc = correct / total * 100 print(f"[{epoch + 1:2d}/{epochs}] Loss: {total_loss / len(train_loader):.4f} | " f"Train: {train_acc:.2f}% | Test: {test_acc:.2f}%") scheduler.step() if test_acc > best_acc: best_acc = test_acc wait = 0 torch.save({ 'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'label_encoder_classes': le.classes_, 'acc': best_acc, 'epoch': epoch, 'input_dim': X.shape[2], 'num_classes': len(le.classes_) }, "best_asl_transformer.pth") print(f" → New best: {best_acc:.2f}%") else: wait += 1 if wait >= patience: print("Early stopping") break print("=" * 60) print(f"\n✓ Training complete!") print(f"✓ Best test accuracy: {best_acc:.2f}%") print(f"✓ Model saved: best_asl_transformer.pth") if __name__ == "__main__": main()