# =============================== # IMPORTS # =============================== import os import json import math import time import pickle import numpy as np import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import Dataset, DataLoader from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from multiprocessing import Pool, cpu_count from functools import partial # =============================== # GPU SETUP # =============================== device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") if device.type == "cuda": print("GPU:", torch.cuda.get_device_name(0)) torch.backends.cudnn.benchmark = True # =============================== # DATA LOADING # =============================== def load_kaggle_asl_data(base_path): train_df = pd.read_csv(os.path.join(base_path, "train.csv")) with open(os.path.join(base_path, "sign_to_prediction_index_map.json")) as f: sign_to_idx = json.load(f) return train_df, sign_to_idx def extract_hand_landmarks_from_parquet(path): df = pd.read_parquet(path) left = df[df["type"] == "left_hand"] right = df[df["type"] == "right_hand"] if len(left) > 0: hand = left elif len(right) > 0: hand = right else: return None landmarks = [] for i in range(21): lm = hand[hand["landmark_index"] == i] if len(lm) == 0: landmarks.append([0.0, 0.0, 0.0]) else: landmarks.append([ lm["x"].mean(), lm["y"].mean(), lm["z"].mean() ]) return np.array(landmarks, dtype=np.float32) def get_features(landmarks): if landmarks is None: return None wrist = landmarks[0] points = landmarks - wrist scale = np.linalg.norm(points[9]) if scale < 1e-6: scale = 1.0 points /= scale mean = points.mean(axis=0) std = points.std(axis=0) + 1e-6 points = (points - mean) / std features = points.flatten() tips = [4, 8, 12, 16, 20] bases = [1, 5, 9, 13, 17] tip_dist = [] curl = [] for b, t in zip(bases, tips): curl.append(np.linalg.norm(points[t] - points[b])) for i in range(len(tips) - 1): tip_dist.append(np.linalg.norm(points[tips[i]] - points[tips[i+1]])) return np.concatenate([features, tip_dist, curl]).astype(np.float32) def process_row(row, base_path): path = os.path.join(base_path, row["path"]) if not os.path.exists(path): return None, None try: lm = extract_hand_landmarks_from_parquet(path) feat = get_features(lm) return feat, row["sign"] except: return None, None # =============================== # LOAD + PROCESS DATA # =============================== base_path = "asl_kaggle" train_df, sign_to_idx = load_kaggle_asl_data(base_path) rows = [row for _, row in train_df.iterrows()] X, y = [], [] with Pool(cpu_count()) as pool: func = partial(process_row, base_path=base_path) for feat, sign in pool.map(func, rows): if feat is not None: X.append(feat) y.append(sign) X = np.array(X, dtype=np.float32) y = np.array(y) print("Samples:", len(X)) print("Feature dim:", X.shape[1]) # =============================== # LABEL ENCODING # =============================== le = LabelEncoder() y = le.fit_transform(y) num_classes = len(le.classes_) # =============================== # SPLIT # =============================== X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, stratify=y, random_state=42 ) # =============================== # DATASET # =============================== class ASLDataset(Dataset): def __init__(self, X, y): self.X = torch.tensor(X, dtype=torch.float32) self.y = torch.tensor(y, dtype=torch.long) def __len__(self): return len(self.X) def __getitem__(self, idx): return self.X[idx], self.y[idx] train_loader = DataLoader( ASLDataset(X_train, y_train), batch_size=256, shuffle=True, pin_memory=True ) test_loader = DataLoader( ASLDataset(X_test, y_test), batch_size=256, shuffle=False, pin_memory=True ) # =============================== # MODEL (FIXED) # =============================== class TransformerASL(nn.Module): def __init__(self, input_dim, num_classes): super().__init__() self.proj = nn.Linear(input_dim, 256) self.norm = nn.LayerNorm(256) encoder_layer = nn.TransformerEncoderLayer( d_model=256, nhead=8, dim_feedforward=1024, dropout=0.1, activation="gelu", batch_first=True, norm_first=True ) self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=4) self.fc1 = nn.Linear(256, 512) self.bn1 = nn.BatchNorm1d(512) self.drop1 = nn.Dropout(0.4) self.fc2 = nn.Linear(512, 256) self.bn2 = nn.BatchNorm1d(256) self.drop2 = nn.Dropout(0.3) self.out = nn.Linear(256, num_classes) def forward(self, x): x = self.proj(x) x = self.norm(x) x = x.unsqueeze(1) # (B, 1, 256) x = self.encoder(x) x = x.squeeze(1) x = F.gelu(self.bn1(self.fc1(x))) x = self.drop1(x) x = F.gelu(self.bn2(self.fc2(x))) x = self.drop2(x) return self.out(x) model = TransformerASL(X.shape[1], num_classes).to(device) print("Parameters:", sum(p.numel() for p in model.parameters())) # =============================== # TRAINING SETUP # =============================== criterion = nn.CrossEntropyLoss(label_smoothing=0.1) optimizer = optim.AdamW(model.parameters(), lr=3e-4, weight_decay=1e-4) scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 10) # =============================== # TRAIN / EVAL # =============================== def train_epoch(): model.train() total, correct, loss_sum = 0, 0, 0 for x, y in train_loader: x, y = x.to(device), y.to(device) optimizer.zero_grad(set_to_none=True) logits = model(x) loss = criterion(logits, y) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() loss_sum += loss.item() correct += (logits.argmax(1) == y).sum().item() total += y.size(0) return loss_sum / len(train_loader), 100 * correct / total @torch.no_grad() def evaluate(): model.eval() total, correct = 0, 0 for x, y in test_loader: x, y = x.to(device), y.to(device) logits = model(x) correct += (logits.argmax(1) == y).sum().item() total += y.size(0) return 100 * correct / total # =============================== # TRAIN LOOP # =============================== best_acc = 0 patience = 15 wait = 0 epochs = 50 for epoch in range(epochs): loss, train_acc = train_epoch() test_acc = evaluate() scheduler.step() print(f"Epoch {epoch+1}/{epochs} | " f"Loss {loss:.4f} | " f"Train {train_acc:.2f}% | " f"Test {test_acc:.2f}%") if test_acc > best_acc: best_acc = test_acc wait = 0 torch.save({ "model": model.state_dict(), "label_encoder": le }, "asl_transformer_fixed.pth") else: wait += 1 if wait >= patience: print("Early stopping") break print("Best accuracy:", best_acc)