import os import polars as pl import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from concurrent.futures import ProcessPoolExecutor from tqdm import tqdm # --- CONFIGURATION --- BASE_PATH = "asl_kaggle" TARGET_FRAMES = 22 # Hand landmarks + Lip landmarks (approximate indices for high-value face points) LIPS = [61, 146, 91, 181, 84, 17, 314, 405, 321, 375, 291, 308, 324, 318, 402, 317, 14, 87, 178, 88, 95] HANDS = list(range(468, 543)) SELECTED_INDICES = LIPS + HANDS NUM_FEATS = len(SELECTED_INDICES) * 3 # X, Y, Z for each selected point device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") # --- DATA PROCESSING --- def load_kaggle_metadata(base_path): return pl.read_csv(os.path.join(base_path, "train.csv")) def load_and_preprocess(path, base_path=BASE_PATH, target_frames=TARGET_FRAMES): parquet_path = os.path.join(base_path, path) df = pl.read_parquet(parquet_path) # 1. Spatial Normalization (Nose Anchor) anchors = ( df.filter((pl.col("type") == "face") & (pl.col("landmark_index") == 0)) .select([pl.col("frame"), pl.col("x").alias("nx"), pl.col("y").alias("ny"), pl.col("z").alias("nz")]) ) processed = ( df.join(anchors, on="frame", how="left") .with_columns([ (pl.col("x") - pl.col("nx")).fill_null(0.0), (pl.col("y") - pl.col("ny")).fill_null(0.0), (pl.col("z") - pl.col("nz")).fill_null(0.0), ]) .sort(["frame", "type", "landmark_index"]) ) # 2. Reshape & Feature Selection # Get unique frames and total landmarks (543) raw_tensor = processed.select(["x", "y", "z"]).to_numpy().reshape(-1, 543, 3) # Slice to keep only Hands and Lips reduced_tensor = raw_tensor[:, SELECTED_INDICES, :] # 3. Temporal Normalization (Resample to fixed frame count) curr_len = reduced_tensor.shape[0] indices = np.linspace(0, curr_len - 1, num=target_frames).round().astype(int) return reduced_tensor[indices] # --- MODEL ARCHITECTURE --- class ASLClassifier(nn.Module): def __init__(self, num_classes, target_frames=TARGET_FRAMES, num_feats=NUM_FEATS): super().__init__() self.conv1 = nn.Conv1d(num_feats, 256, kernel_size=3, padding=1) self.bn1 = nn.BatchNorm1d(256) self.conv2 = nn.Conv1d(256, 512, kernel_size=3, padding=1) self.bn2 = nn.BatchNorm1d(512) self.pool = nn.MaxPool1d(2) self.dropout = nn.Dropout(0.5) self.fc = nn.Linear(512, num_classes) def forward(self, x): # x: (Batch, Frames, Selected_Landmarks, 3) x = x.view(x.shape[0], x.shape[1], -1) # Flatten landmarks/coords x = x.transpose(1, 2) # (Batch, Features, Time) x = F.relu(self.bn1(self.conv1(x))) x = self.pool(x) x = F.relu(self.bn2(self.conv2(x))) x = self.pool(x) x = F.adaptive_avg_pool1d(x, 1).squeeze(-1) x = self.dropout(x) return self.fc(x) # --- EXECUTION --- if __name__ == "__main__": asl_data = load_kaggle_metadata(BASE_PATH) # Optimization: Process 100 samples to get a feel for the shape/speed # Using multiprocessing to avoid the slow single-thread loop paths = asl_data["path"].to_list() print(f"Processing {len(paths)} files in parallel...") with ProcessPoolExecutor() as executor: results = list(tqdm(executor.map(load_and_preprocess, paths), total=len(paths))) # Stack into one giant Torch tensor dataset_tensor = torch.tensor(np.array(results), dtype=torch.float32) print(f"Final Tensor Shape: {dataset_tensor.shape}") # Shape: (100, 22, 96, 3) -> (Batch, Time, Landmarks, Coords) # Initialize Model num_unique_signs = asl_data["sign"].n_unique() model = ASLClassifier(num_classes=num_unique_signs) model.to(device) # Test pass output = model(dataset_tensor) print(f"Model Output Shape: {output.shape}") # (100, 250)