chatgpt lock tf in pt 2
This commit is contained in:
258
training.py
258
training.py
@@ -14,21 +14,13 @@ import torch.optim as optim
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
from collections import Counter
|
||||
from multiprocessing import Pool, cpu_count
|
||||
from functools import partial
|
||||
from tqdm import tqdm
|
||||
from collections import Counter
|
||||
|
||||
# ===============================
|
||||
# DEVICE
|
||||
# ===============================
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
print(f"Using device: {device}")
|
||||
if device.type == "cuda":
|
||||
print("GPU:", torch.cuda.get_device_name(0))
|
||||
|
||||
# ===============================
|
||||
# DATA LOADING / FEATURES
|
||||
# DATA LOADING
|
||||
# ===============================
|
||||
def load_kaggle_asl_data(base_path):
|
||||
train_df = pd.read_csv(os.path.join(base_path, "train.csv"))
|
||||
@@ -36,39 +28,52 @@ def load_kaggle_asl_data(base_path):
|
||||
sign_to_idx = json.load(f)
|
||||
return train_df, sign_to_idx
|
||||
|
||||
|
||||
def extract_hand_landmarks_from_parquet(path):
|
||||
try:
|
||||
df = pd.read_parquet(path)
|
||||
left = df[df["type"] == "left_hand"]
|
||||
right = df[df["type"] == "right_hand"]
|
||||
|
||||
hand = left if len(left) >= len(right) else right
|
||||
if len(hand) == 0:
|
||||
return None
|
||||
|
||||
frames = sorted(hand['frame'].unique())
|
||||
landmarks_seq = []
|
||||
for f in frames:
|
||||
lm_frame = hand[hand['frame']==f]
|
||||
|
||||
for frame in frames:
|
||||
lm_frame = hand[hand['frame'] == frame]
|
||||
lm_list = []
|
||||
for i in range(21):
|
||||
lm = lm_frame[lm_frame['landmark_index'] == i]
|
||||
if len(lm) == 0:
|
||||
lm_list.append([0.0, 0.0, 0.0])
|
||||
else:
|
||||
lm_list.append([float(lm['x'].iloc[0]), float(lm['y'].iloc[0]), float(lm['z'].iloc[0])])
|
||||
lm_list.append([
|
||||
float(lm['x'].iloc[0]),
|
||||
float(lm['y'].iloc[0]),
|
||||
float(lm['z'].iloc[0])
|
||||
])
|
||||
landmarks_seq.append(lm_list)
|
||||
|
||||
return np.array(landmarks_seq, dtype=np.float32)
|
||||
except:
|
||||
return None
|
||||
|
||||
def get_features_sequence_augmented(landmarks_seq, max_frames=100):
|
||||
|
||||
def get_features_sequence(landmarks_seq, max_frames=100):
|
||||
if landmarks_seq is None or len(landmarks_seq) == 0:
|
||||
return None, None
|
||||
|
||||
# Center on wrist
|
||||
landmarks_seq -= landmarks_seq[:,0:1,:]
|
||||
# Scale using wrist → middle finger MCP
|
||||
landmarks_seq = landmarks_seq - landmarks_seq[:, 0:1, :]
|
||||
|
||||
# Scale using wrist → middle finger MCP distance
|
||||
scale = np.linalg.norm(landmarks_seq[:, 0] - landmarks_seq[:, 9], axis=1, keepdims=True)
|
||||
scale = np.maximum(scale, 1e-6)
|
||||
landmarks_seq /= scale[:, np.newaxis, :]
|
||||
landmarks_seq = landmarks_seq / scale[:, np.newaxis, :]
|
||||
|
||||
# Finger curl distances
|
||||
tips = [4, 8, 12, 16, 20]
|
||||
bases = [1, 5, 9, 13, 17]
|
||||
@@ -76,47 +81,44 @@ def get_features_sequence_augmented(landmarks_seq, max_frames=100):
|
||||
for b, t in zip(bases, tips):
|
||||
curl_features.append(np.linalg.norm(landmarks_seq[:, t] - landmarks_seq[:, b], axis=1))
|
||||
curl_features = np.stack(curl_features, axis=1) # (T,5)
|
||||
|
||||
# Temporal deltas
|
||||
deltas = np.zeros_like(landmarks_seq)
|
||||
deltas[1:] = landmarks_seq[1:] - landmarks_seq[:-1]
|
||||
# Flatten
|
||||
seq = np.concatenate([landmarks_seq, deltas, curl_features], axis=1)
|
||||
# Pad / truncate
|
||||
T = seq.shape[0]
|
||||
|
||||
# Flatten features along last axis
|
||||
seq = np.concatenate([landmarks_seq, deltas, curl_features[:, :, np.newaxis]], axis=2)
|
||||
seq = seq.reshape(seq.shape[0], -1) # (T, feature_dim)
|
||||
|
||||
# Pad or truncate to max_frames
|
||||
T, F = seq.shape
|
||||
if T < max_frames:
|
||||
pad = np.zeros((max_frames - T, seq.shape[1]), dtype=np.float32)
|
||||
seq = np.concatenate([seq, pad])
|
||||
else:
|
||||
seq = seq[:max_frames]
|
||||
pad = np.zeros((max_frames - T, F), dtype=np.float32)
|
||||
seq = np.concatenate([seq, pad], axis=0)
|
||||
elif T > max_frames:
|
||||
seq = seq[:max_frames, :]
|
||||
|
||||
# Mask
|
||||
valid_mask = np.zeros(max_frames, dtype=bool)
|
||||
valid_mask[:min(T, max_frames)] = True
|
||||
return seq, valid_mask
|
||||
|
||||
return seq.astype(np.float32), valid_mask
|
||||
|
||||
|
||||
def process_row(row, base_path, max_frames=100):
|
||||
path = os.path.join(base_path, row["path"])
|
||||
if not os.path.exists(path):
|
||||
return None, None, None
|
||||
try:
|
||||
lm = extract_hand_landmarks_from_parquet(path)
|
||||
if lm is None:
|
||||
return None, None, None
|
||||
seq, mask = get_features_sequence_augmented(lm, max_frames)
|
||||
if seq is None:
|
||||
feat, mask = get_features_sequence(lm, max_frames)
|
||||
if feat is None:
|
||||
return None, None, None
|
||||
return feat, mask, row["sign"]
|
||||
except:
|
||||
return None, None, None
|
||||
return seq, mask, row["sign"]
|
||||
|
||||
# ===============================
|
||||
# DATASET
|
||||
# ===============================
|
||||
class ASLSequenceDataset(Dataset):
|
||||
def __init__(self, X, masks, y):
|
||||
self.X = torch.from_numpy(X).float()
|
||||
self.masks = torch.from_numpy(masks)
|
||||
self.y = torch.from_numpy(y).long()
|
||||
def __len__(self):
|
||||
return len(self.X)
|
||||
def __getitem__(self, idx):
|
||||
return self.X[idx], self.masks[idx], self.y[idx]
|
||||
|
||||
# ===============================
|
||||
# TRANSFORMER MODEL
|
||||
@@ -125,26 +127,40 @@ class PositionalEncoding(nn.Module):
|
||||
def __init__(self, d_model, max_len=128):
|
||||
super().__init__()
|
||||
pe = torch.zeros(max_len, d_model)
|
||||
pos = torch.arange(0,max_len,dtype=torch.float).unsqueeze(1)
|
||||
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
||||
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
||||
pe[:,0::2] = torch.sin(pos*div_term)
|
||||
pe[:,1::2] = torch.cos(pos*div_term)
|
||||
pe[:, 0::2] = torch.sin(position * div_term)
|
||||
pe[:, 1::2] = torch.cos(position * div_term)
|
||||
self.register_buffer('pe', pe.unsqueeze(0))
|
||||
|
||||
def forward(self, x):
|
||||
return x + self.pe[:, :x.size(1)]
|
||||
|
||||
|
||||
class TransformerASL(nn.Module):
|
||||
def __init__(self, input_dim=131, num_classes=250, d_model=192, nhead=6, num_layers=4):
|
||||
def __init__(self, input_dim=63, num_classes=250, d_model=192, nhead=6, num_layers=4):
|
||||
super().__init__()
|
||||
self.proj = nn.Linear(input_dim, d_model)
|
||||
self.norm_in = nn.LayerNorm(d_model)
|
||||
self.pos = PositionalEncoding(d_model)
|
||||
|
||||
enc_layer = nn.TransformerEncoderLayer(
|
||||
d_model=d_model, nhead=nhead, dim_feedforward=d_model*4,
|
||||
dropout=0.2, activation='gelu', batch_first=True, norm_first=True
|
||||
d_model=d_model,
|
||||
nhead=nhead,
|
||||
dim_feedforward=d_model * 4,
|
||||
dropout=0.15,
|
||||
activation='gelu',
|
||||
batch_first=True,
|
||||
norm_first=True
|
||||
)
|
||||
self.encoder = nn.TransformerEncoder(enc_layer, num_layers=num_layers)
|
||||
self.head = nn.Sequential(nn.LayerNorm(d_model), nn.Dropout(0.25), nn.Linear(d_model,num_classes))
|
||||
|
||||
self.head = nn.Sequential(
|
||||
nn.LayerNorm(d_model),
|
||||
nn.Dropout(0.25),
|
||||
nn.Linear(d_model, num_classes)
|
||||
)
|
||||
|
||||
def forward(self, x, key_padding_mask=None):
|
||||
x = self.proj(x)
|
||||
x = self.norm_in(x)
|
||||
@@ -153,121 +169,156 @@ class TransformerASL(nn.Module):
|
||||
x = x.mean(dim=1)
|
||||
return self.head(x)
|
||||
|
||||
|
||||
def create_padding_mask(lengths, max_len):
|
||||
return torch.arange(max_len, device=lengths.device)[None, :] >= lengths[:, None]
|
||||
|
||||
# ===============================
|
||||
# MAIN
|
||||
# MAIN TRAINING
|
||||
# ===============================
|
||||
def main():
|
||||
base_path = "asl_kaggle" # adjust path
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
print(f"Using device: {device}")
|
||||
if device.type == "cuda":
|
||||
print("GPU:", torch.cuda.get_device_name(0))
|
||||
|
||||
base_path = "asl_kaggle" # ← set your dataset path
|
||||
max_frames = 100
|
||||
MIN_SAMPLES_PER_CLASS = 6
|
||||
|
||||
# Load metadata
|
||||
print("Loading metadata...")
|
||||
train_df, sign_to_idx = load_kaggle_asl_data(base_path)
|
||||
rows = [row for _, row in train_df.iterrows()]
|
||||
|
||||
# Extract features
|
||||
print("Extracting features...")
|
||||
print("Processing landmark sequences...")
|
||||
with Pool(cpu_count()) as pool:
|
||||
results = list(tqdm(pool.imap(partial(process_row,base_path=base_path,max_frames=max_frames),rows),
|
||||
total=len(rows)))
|
||||
results = list(tqdm(
|
||||
pool.imap(
|
||||
partial(process_row, base_path=base_path, max_frames=max_frames),
|
||||
rows
|
||||
),
|
||||
total=len(rows),
|
||||
desc="Extracting landmarks"
|
||||
))
|
||||
|
||||
X_list, masks_list, y_list = [], [], []
|
||||
for seq, mask, sign in results:
|
||||
if seq is not None:
|
||||
X_list.append(seq)
|
||||
for feat, mask, sign in results:
|
||||
if feat is not None and feat.shape[0] == max_frames:
|
||||
X_list.append(feat)
|
||||
masks_list.append(mask)
|
||||
y_list.append(sign)
|
||||
|
||||
if not X_list:
|
||||
print("No valid sequences found")
|
||||
print("No valid sequences found. Check parquet files / paths.")
|
||||
return
|
||||
|
||||
X = np.stack(X_list)
|
||||
masks = np.stack(masks_list)
|
||||
print(f"{len(X)} sequences | shape: {X.shape}")
|
||||
print(f"Loaded {len(X)} sequences | shape: {X.shape}")
|
||||
|
||||
# Normalize
|
||||
# Global normalization
|
||||
X = np.clip(X, -5.0, 5.0)
|
||||
mean = X.mean(axis=(0, 1), keepdims=True)
|
||||
std = X.std(axis=(0, 1), keepdims=True) + 1e-8
|
||||
X = (X - mean) / std
|
||||
|
||||
# Labels
|
||||
le = LabelEncoder()
|
||||
y = le.fit_transform(y_list)
|
||||
|
||||
# Remove classes with too few samples
|
||||
counts = Counter(y)
|
||||
valid_classes = [cls for cls, cnt in counts.items() if cnt >= MIN_SAMPLES_PER_CLASS]
|
||||
mask_valid = np.isin(y, valid_classes)
|
||||
X = X[mask_valid]; masks = masks[mask_valid]; y = y[mask_valid]
|
||||
le = LabelEncoder(); y = le.fit_transform(y)
|
||||
print(f"{len(X)} samples | {len(le.classes_)} classes")
|
||||
X = X[mask_valid]
|
||||
masks = masks[mask_valid]
|
||||
y = y[mask_valid]
|
||||
|
||||
# Split
|
||||
le = LabelEncoder()
|
||||
y = le.fit_transform(y)
|
||||
print(f"{len(X)} samples | {len(le.classes_)} classes after filtering")
|
||||
|
||||
# Train-test split
|
||||
X_train, X_test, masks_train, masks_test, y_train, y_test = train_test_split(
|
||||
X, masks, y, test_size=0.15, stratify=y, random_state=42
|
||||
)
|
||||
|
||||
# Datasets / loaders
|
||||
train_dataset = ASLSequenceDataset(X_train, masks_train, y_train)
|
||||
test_dataset = ASLSequenceDataset(X_test, masks_test, y_test)
|
||||
train_loader = DataLoader(train_dataset, batch_size=64,shuffle=True,num_workers=4,pin_memory=True)
|
||||
test_loader = DataLoader(test_dataset, batch_size=96,shuffle=False,num_workers=4,pin_memory=True)
|
||||
# Dataset
|
||||
class ASLSequenceDataset(Dataset):
|
||||
def __init__(self, X, masks, y):
|
||||
self.X = torch.from_numpy(X).float()
|
||||
self.masks = torch.from_numpy(masks)
|
||||
self.y = torch.from_numpy(y).long()
|
||||
|
||||
# Model
|
||||
model = TransformerASL(input_dim=X.shape[2], num_classes=len(le.classes_)).to(device)
|
||||
print(f"Model params: {sum(p.numel() for p in model.parameters()):,}")
|
||||
def __len__(self):
|
||||
return len(self.X)
|
||||
|
||||
# Class weights
|
||||
counts = Counter(y_train)
|
||||
class_weights = np.array([len(y_train)/ (len(counts)*counts[i]) for i in range(len(counts))],dtype=np.float32)
|
||||
criterion = nn.CrossEntropyLoss(weight=torch.tensor(class_weights).to(device),label_smoothing=0.05)
|
||||
optimizer = optim.AdamW(model.parameters(), lr=3e-4, weight_decay=1e-4)
|
||||
def __getitem__(self, idx):
|
||||
return self.X[idx], self.masks[idx], self.y[idx]
|
||||
|
||||
train_loader = DataLoader(
|
||||
ASLSequenceDataset(X_train, masks_train, y_train),
|
||||
batch_size=64, shuffle=True, num_workers=4, pin_memory=True
|
||||
)
|
||||
test_loader = DataLoader(
|
||||
ASLSequenceDataset(X_test, masks_test, y_test),
|
||||
batch_size=96, shuffle=False, num_workers=4, pin_memory=True
|
||||
)
|
||||
|
||||
model = TransformerASL(
|
||||
input_dim=X.shape[2],
|
||||
num_classes=len(le.classes_),
|
||||
d_model=192,
|
||||
nhead=6,
|
||||
num_layers=4
|
||||
).to(device)
|
||||
print(f"Model parameters: {sum(p.numel() for p in model.parameters()):,}")
|
||||
|
||||
criterion = nn.CrossEntropyLoss(label_smoothing=0.05)
|
||||
optimizer = optim.AdamW(model.parameters(), lr=5e-4, weight_decay=1e-4)
|
||||
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10)
|
||||
|
||||
# Training / eval
|
||||
def train_epoch():
|
||||
# Training
|
||||
best_acc = 0.0
|
||||
patience = 15
|
||||
wait = 0
|
||||
epochs = 70
|
||||
|
||||
for epoch in range(epochs):
|
||||
model.train()
|
||||
total_loss=0; correct=total=0
|
||||
total_loss = 0
|
||||
correct = total = 0
|
||||
for x, mask, yb in tqdm(train_loader, desc="Train"):
|
||||
x, mask, yb = x.to(device), mask.to(device), yb.to(device)
|
||||
lengths = mask.sum(dim=1)
|
||||
pad_mask = create_padding_mask(lengths, x.size(1))
|
||||
key_mask = ~mask # True where padding
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
logits = model(x,key_padding_mask=pad_mask)
|
||||
logits = model(x, key_padding_mask=key_mask)
|
||||
loss = criterion(logits, yb)
|
||||
loss.backward()
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(),0.8)
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=0.8)
|
||||
optimizer.step()
|
||||
total_loss += loss.item()
|
||||
correct += (logits.argmax(-1) == yb).sum().item()
|
||||
total += yb.size(0)
|
||||
return total_loss/len(train_loader), correct/total*100
|
||||
train_acc = correct / total * 100
|
||||
|
||||
@torch.no_grad()
|
||||
def evaluate():
|
||||
# Eval
|
||||
model.eval()
|
||||
correct = total = 0
|
||||
with torch.no_grad():
|
||||
for x, mask, yb in test_loader:
|
||||
x, mask, yb = x.to(device), mask.to(device), yb.to(device)
|
||||
lengths = mask.sum(dim=1)
|
||||
pad_mask = create_padding_mask(lengths, x.size(1))
|
||||
logits = model(x,key_padding_mask=pad_mask)
|
||||
key_mask = ~mask
|
||||
logits = model(x, key_padding_mask=key_mask)
|
||||
correct += (logits.argmax(-1) == yb).sum().item()
|
||||
total += yb.size(0)
|
||||
return correct/total*100 if total>0 else 0.0
|
||||
test_acc = correct / total * 100
|
||||
|
||||
print(f"[{epoch+1:2d}/{epochs}] Loss: {total_loss/len(train_loader):.4f} | "
|
||||
f"Train: {train_acc:.2f}% | Test: {test_acc:.2f}%")
|
||||
|
||||
# Train loop
|
||||
best_acc=0.0; patience=15; wait=0; epochs=70
|
||||
for epoch in range(epochs):
|
||||
loss, train_acc = train_epoch()
|
||||
test_acc = evaluate()
|
||||
print(f"[{epoch+1:2d}/{epochs}] loss:{loss:.4f} train:{train_acc:.2f}% test:{test_acc:.2f}%")
|
||||
scheduler.step()
|
||||
if test_acc > best_acc:
|
||||
best_acc=test_acc; wait=0
|
||||
best_acc = test_acc
|
||||
wait = 0
|
||||
torch.save({
|
||||
'model': model.state_dict(),
|
||||
'optimizer': optimizer.state_dict(),
|
||||
@@ -281,7 +332,8 @@ def main():
|
||||
if wait >= patience:
|
||||
print("Early stopping")
|
||||
break
|
||||
print(f"\nBest test accuracy reached: {best_acc:.2f}%")
|
||||
|
||||
print(f"\nBest test accuracy: {best_acc:.2f}%")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user