grok lock in

This commit is contained in:
2026-01-10 23:04:48 -06:00
parent c209e036cb
commit f66049f6ea

View File

@@ -4,23 +4,21 @@
import os
import json
import math
import time
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
from multiprocessing import Pool, cpu_count
from functools import partial
from tqdm import tqdm
# ===============================
# GPU SETUP
# DEVICE
# ===============================
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
@@ -29,7 +27,7 @@ if device.type == "cuda":
torch.backends.cudnn.benchmark = True
# ===============================
# DATA LOADING & FEATURE EXTRACTION
# DATA LOADING
# ===============================
def load_kaggle_asl_data(base_path):
train_df = pd.read_csv(os.path.join(base_path, "train.csv"))
@@ -38,19 +36,12 @@ def load_kaggle_asl_data(base_path):
return train_df, sign_to_idx
def extract_hand_landmarks_from_parquet(path):
try:
df = pd.read_parquet(path)
left = df[df["type"] == "left_hand"]
right = df[df["type"] == "right_hand"]
hand = None
if len(left) > 0:
hand = left
elif len(right) > 0:
hand = right
else:
hand = df[df["type"].isin(["left_hand", "right_hand"])]
if len(hand) == 0:
return None
# Keep all frames
frames = sorted(hand['frame'].unique())
landmarks_seq = []
@@ -62,87 +53,100 @@ def extract_hand_landmarks_from_parquet(path):
if len(lm) == 0:
lm_list.append([0.0, 0.0, 0.0])
else:
lm_list.append([
lm['x'].mean(),
lm['y'].mean(),
lm['z'].mean()
])
lm_list.append([lm['x'].values[0], lm['y'].values[0], lm['z'].values[0]])
landmarks_seq.append(lm_list)
return np.array(landmarks_seq, dtype=np.float32) # (T, 21, 3)
def get_features_sequence(landmarks_seq, max_frames=100):
if landmarks_seq is None:
except:
return None
# Center on wrist
points = landmarks_seq - landmarks_seq[:, 0:1, :]
scale = np.linalg.norm(points[:, 9, :], axis=1, keepdims=True)
scale[scale < 1e-6] = 1.0
points /= scale[:, np.newaxis, :]
# Flatten per frame
frames = points.reshape(points.shape[0], -1)
# Pad or truncate
if frames.shape[0] < max_frames:
pad = np.zeros((max_frames - frames.shape[0], frames.shape[1]), dtype=np.float32)
frames = np.vstack([frames, pad])
else:
frames = frames[:max_frames]
return frames # (max_frames, 63)
def process_row(row, base_path, max_frames=100):
def get_features_sequence(landmarks_seq, max_frames=96):
if landmarks_seq is None or len(landmarks_seq) == 0:
return None
# Center on wrist (landmark 0)
landmarks_seq = landmarks_seq - landmarks_seq[:, 0:1, :]
# Rough scale normalization (using index finger length as reference)
scale = np.linalg.norm(landmarks_seq[:, 8] - landmarks_seq[:, 5], axis=1, keepdims=True)
scale = np.maximum(scale, 1e-6)
landmarks_seq /= scale
# Flatten → (T, 63)
seq = landmarks_seq.reshape(landmarks_seq.shape[0], -1)
# Pad / truncate
if len(seq) < max_frames:
pad = np.zeros((max_frames - len(seq), seq.shape[1]), dtype=np.float32)
seq = np.concatenate([seq, pad], axis=0)
else:
seq = seq[:max_frames]
return seq.astype(np.float32)
def process_row(row, base_path, max_frames=96):
path = os.path.join(base_path, row['path'])
if not os.path.exists(path):
return None, None
try:
lm_seq = extract_hand_landmarks_from_parquet(path)
feat_seq = get_features_sequence(lm_seq, max_frames)
return feat_seq, row['sign']
except:
lm = extract_hand_landmarks_from_parquet(path)
feat = get_features_sequence(lm, max_frames)
if feat is None:
return None, None
return feat, row['sign']
# ===============================
# LOAD + PROCESS DATA
# LOAD & PROCESS (with progress)
# ===============================
base_path = "asl_kaggle"
base_path = "asl_kaggle" # ← change if needed
train_df, sign_to_idx = load_kaggle_asl_data(base_path)
print("Processing videos...")
rows = [row for _, row in train_df.iterrows()]
X, y = [], []
func = partial(process_row, base_path=base_path, max_frames=100)
with Pool(cpu_count()) as pool:
for feat_seq, sign in pool.map(func, rows):
if feat_seq is not None:
X.append(feat_seq)
results = list(tqdm(pool.imap(
partial(process_row, base_path=base_path, max_frames=96),
rows
), total=len(rows)))
X, y = [], []
for feat, sign in results:
if feat is not None:
X.append(feat)
y.append(sign)
X = np.stack(X) # (N, T, 63)
y = np.array(y)
print("Samples:", len(X))
print("Sequence shape:", X.shape[1:])
print(f"Loaded {len(X)} valid samples | shape: {X.shape}")
# Global normalization (very important!)
scaler = StandardScaler()
X_reshaped = X.reshape(-1, X.shape[-1])
X_reshaped = scaler.fit_transform(X_reshaped)
X = X_reshaped.reshape(X.shape)
# ===============================
# LABEL ENCODING
# LABELS
# ===============================
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
y = le.fit_transform(y)
num_classes = len(le.classes_)
print("Num classes:", num_classes)
print(f"Classes: {num_classes}")
# ===============================
# SPLIT
# ===============================
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, stratify=y, random_state=42
X, y, test_size=0.15, stratify=y, random_state=42
)
# ===============================
# DATASET
# DATASET + DATALOADER
# ===============================
class ASLSequenceDataset(Dataset):
def __init__(self, X, y):
self.X = torch.tensor(X, dtype=torch.float32)
self.y = torch.tensor(y, dtype=torch.long)
self.X = torch.from_numpy(X).float()
self.y = torch.from_numpy(y).long()
def __len__(self):
return len(self.X)
@@ -150,14 +154,16 @@ class ASLSequenceDataset(Dataset):
def __getitem__(self, idx):
return self.X[idx], self.y[idx]
train_loader = DataLoader(ASLSequenceDataset(X_train, y_train), batch_size=64, shuffle=True, pin_memory=True)
test_loader = DataLoader(ASLSequenceDataset(X_test, y_test), batch_size=64, shuffle=False, pin_memory=True)
train_loader = DataLoader(ASLSequenceDataset(X_train, y_train),
batch_size=64, shuffle=True, num_workers=4, pin_memory=True)
test_loader = DataLoader(ASLSequenceDataset(X_test, y_test),
batch_size=96, shuffle=False, num_workers=4, pin_memory=True)
# ===============================
# TRANSFORMER MODEL
# MODEL
# ===============================
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=100):
def __init__(self, d_model, max_len=128):
super().__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
@@ -167,98 +173,139 @@ class PositionalEncoding(nn.Module):
self.register_buffer('pe', pe.unsqueeze(0))
def forward(self, x):
return x + self.pe[:, :x.size(1), :]
return x + self.pe[:, :x.size(1)]
class TransformerASL(nn.Module):
def __init__(self, input_dim, num_classes, d_model=256, nhead=8, num_layers=4):
def __init__(self, input_dim=63, num_classes=250, d_model=192, nhead=6, num_layers=4):
super().__init__()
self.proj = nn.Linear(input_dim, d_model)
self.norm = nn.LayerNorm(d_model)
self.norm_in = nn.LayerNorm(d_model)
self.pos = PositionalEncoding(d_model)
encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=1024,
dropout=0.1, activation='gelu', batch_first=True, norm_first=True)
encoder_layer = nn.TransformerEncoderLayer(
d_model=d_model,
nhead=nhead,
dim_feedforward=d_model*4,
dropout=0.15,
activation='gelu',
batch_first=True,
norm_first=True
)
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
self.fc = nn.Sequential(
nn.Linear(d_model, 512),
nn.BatchNorm1d(512),
nn.GELU(),
nn.Dropout(0.3),
nn.Linear(512, num_classes)
self.head = nn.Sequential(
nn.LayerNorm(d_model),
nn.Dropout(0.25),
nn.Linear(d_model, num_classes)
)
def forward(self, x):
def forward(self, x, key_padding_mask=None):
x = self.proj(x)
x = self.norm(x)
x = self.norm_in(x)
x = self.pos(x)
x = self.encoder(x) # (B, T, d_model)
x = x.mean(dim=1) # temporal average
x = self.fc(x)
x = self.encoder(x, src_key_padding_mask=key_padding_mask)
x = x.mean(dim=1) # global average pooling
x = self.head(x)
return x
model = TransformerASL(input_dim=X.shape[2], num_classes=num_classes).to(device)
print("Parameters:", sum(p.numel() for p in model.parameters()))
model = TransformerASL(input_dim=63, num_classes=num_classes).to(device)
print(f"Model parameters: {sum(p.numel() for p in model.parameters()):,}")
# ===============================
# TRAIN SETUP
# TRAINING SETUP
# ===============================
criterion = nn.CrossEntropyLoss(label_smoothing=0.1)
optimizer = optim.AdamW(model.parameters(), lr=3e-4, weight_decay=1e-4)
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10)
criterion = nn.CrossEntropyLoss(label_smoothing=0.05)
optimizer = optim.AdamW(model.parameters(), lr=8e-4, weight_decay=1e-4, betas=(0.9, 0.98))
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=15, T_mult=2)
# ===============================
# TRAIN / EVAL FUNCTIONS
# TRAIN / EVAL
# ===============================
def create_padding_mask(seq_len, max_len):
# True = ignore this position
return torch.arange(max_len, device=device)[None, :] >= seq_len[:, None]
def train_epoch():
model.train()
total, correct, loss_sum = 0, 0, 0
for x, y in train_loader:
total_loss = 0
correct = 0
total = 0
for x, y in tqdm(train_loader, desc="Train"):
x, y = x.to(device), y.to(device)
# Very simple length heuristic (can be improved later)
real_lengths = (x.abs().sum(dim=2) > 1e-6).sum(dim=1)
mask = create_padding_mask(real_lengths, x.size(1))
optimizer.zero_grad(set_to_none=True)
logits = model(x)
logits = model(x, key_padding_mask=mask)
loss = criterion(logits, y)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
# STRONG clipping — very important for landmarks
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=0.8)
optimizer.step()
loss_sum += loss.item()
correct += (logits.argmax(1) == y).sum().item()
total_loss += loss.item()
correct += (logits.argmax(dim=-1) == y).sum().item()
total += y.size(0)
return loss_sum/len(train_loader), 100*correct/total
# Debug exploding gradients
if torch.isnan(loss) or grad_norm > 50:
print(f"WARNING - NaN or huge grad! norm={grad_norm:.2f}")
return total_loss / len(train_loader), correct / total * 100
@torch.no_grad()
def evaluate():
model.eval()
total, correct = 0, 0
correct = 0
total = 0
for x, y in test_loader:
x, y = x.to(device), y.to(device)
logits = model(x)
correct += (logits.argmax(1) == y).sum().item()
real_lengths = (x.abs().sum(dim=2) > 1e-6).sum(dim=1)
mask = create_padding_mask(real_lengths, x.size(1))
logits = model(x, key_padding_mask=mask)
correct += (logits.argmax(dim=-1) == y).sum().item()
total += y.size(0)
return 100*correct/total
return correct / total * 100
# ===============================
# TRAIN LOOP
# TRAINING LOOP
# ===============================
best_acc = 0
patience = 15
patience = 18
wait = 0
epochs = 50
epochs = 80
for epoch in range(epochs):
loss, train_acc = train_epoch()
test_acc = evaluate()
print(f"[{epoch+1:2d}/{epochs}] loss: {loss:.4f} | train: {train_acc:.2f}% | test: {test_acc:.2f}%")
scheduler.step()
print(f"Epoch {epoch+1}/{epochs} | Loss {loss:.4f} | Train {train_acc:.2f}% | Test {test_acc:.2f}%")
if test_acc > best_acc:
best_acc = test_acc
wait = 0
torch.save({"model": model.state_dict(), "label_encoder": le}, "asl_transformer_full.pth")
torch.save({
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scaler': scaler,
'label_encoder_classes': le.classes_
}, "best_asl_transformer.pth")
print("→ Saved new best model")
else:
wait += 1
if wait >= patience:
print("Early stopping")
print("Early stopping triggered")
break
print("Best accuracy:", best_acc)
print(f"\nBest test accuracy achieved: {best_acc:.2f}%")