grok lock in
This commit is contained in:
263
training.py
263
training.py
@@ -4,23 +4,21 @@
|
|||||||
import os
|
import os
|
||||||
import json
|
import json
|
||||||
import math
|
import math
|
||||||
import time
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
import torch.optim as optim
|
import torch.optim as optim
|
||||||
|
|
||||||
from torch.utils.data import Dataset, DataLoader
|
from torch.utils.data import Dataset, DataLoader
|
||||||
from sklearn.model_selection import train_test_split
|
from sklearn.model_selection import train_test_split
|
||||||
from sklearn.preprocessing import LabelEncoder
|
from sklearn.preprocessing import StandardScaler
|
||||||
from multiprocessing import Pool, cpu_count
|
from multiprocessing import Pool, cpu_count
|
||||||
from functools import partial
|
from functools import partial
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
# ===============================
|
# ===============================
|
||||||
# GPU SETUP
|
# DEVICE
|
||||||
# ===============================
|
# ===============================
|
||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
print(f"Using device: {device}")
|
print(f"Using device: {device}")
|
||||||
@@ -29,7 +27,7 @@ if device.type == "cuda":
|
|||||||
torch.backends.cudnn.benchmark = True
|
torch.backends.cudnn.benchmark = True
|
||||||
|
|
||||||
# ===============================
|
# ===============================
|
||||||
# DATA LOADING & FEATURE EXTRACTION
|
# DATA LOADING
|
||||||
# ===============================
|
# ===============================
|
||||||
def load_kaggle_asl_data(base_path):
|
def load_kaggle_asl_data(base_path):
|
||||||
train_df = pd.read_csv(os.path.join(base_path, "train.csv"))
|
train_df = pd.read_csv(os.path.join(base_path, "train.csv"))
|
||||||
@@ -38,19 +36,12 @@ def load_kaggle_asl_data(base_path):
|
|||||||
return train_df, sign_to_idx
|
return train_df, sign_to_idx
|
||||||
|
|
||||||
def extract_hand_landmarks_from_parquet(path):
|
def extract_hand_landmarks_from_parquet(path):
|
||||||
|
try:
|
||||||
df = pd.read_parquet(path)
|
df = pd.read_parquet(path)
|
||||||
left = df[df["type"] == "left_hand"]
|
hand = df[df["type"].isin(["left_hand", "right_hand"])]
|
||||||
right = df[df["type"] == "right_hand"]
|
if len(hand) == 0:
|
||||||
|
|
||||||
hand = None
|
|
||||||
if len(left) > 0:
|
|
||||||
hand = left
|
|
||||||
elif len(right) > 0:
|
|
||||||
hand = right
|
|
||||||
else:
|
|
||||||
return None
|
return None
|
||||||
|
|
||||||
# Keep all frames
|
|
||||||
frames = sorted(hand['frame'].unique())
|
frames = sorted(hand['frame'].unique())
|
||||||
landmarks_seq = []
|
landmarks_seq = []
|
||||||
|
|
||||||
@@ -62,87 +53,100 @@ def extract_hand_landmarks_from_parquet(path):
|
|||||||
if len(lm) == 0:
|
if len(lm) == 0:
|
||||||
lm_list.append([0.0, 0.0, 0.0])
|
lm_list.append([0.0, 0.0, 0.0])
|
||||||
else:
|
else:
|
||||||
lm_list.append([
|
lm_list.append([lm['x'].values[0], lm['y'].values[0], lm['z'].values[0]])
|
||||||
lm['x'].mean(),
|
|
||||||
lm['y'].mean(),
|
|
||||||
lm['z'].mean()
|
|
||||||
])
|
|
||||||
landmarks_seq.append(lm_list)
|
landmarks_seq.append(lm_list)
|
||||||
|
|
||||||
return np.array(landmarks_seq, dtype=np.float32) # (T, 21, 3)
|
return np.array(landmarks_seq, dtype=np.float32) # (T, 21, 3)
|
||||||
|
except:
|
||||||
def get_features_sequence(landmarks_seq, max_frames=100):
|
|
||||||
if landmarks_seq is None:
|
|
||||||
return None
|
return None
|
||||||
# Center on wrist
|
|
||||||
points = landmarks_seq - landmarks_seq[:, 0:1, :]
|
|
||||||
scale = np.linalg.norm(points[:, 9, :], axis=1, keepdims=True)
|
|
||||||
scale[scale < 1e-6] = 1.0
|
|
||||||
points /= scale[:, np.newaxis, :]
|
|
||||||
# Flatten per frame
|
|
||||||
frames = points.reshape(points.shape[0], -1)
|
|
||||||
# Pad or truncate
|
|
||||||
if frames.shape[0] < max_frames:
|
|
||||||
pad = np.zeros((max_frames - frames.shape[0], frames.shape[1]), dtype=np.float32)
|
|
||||||
frames = np.vstack([frames, pad])
|
|
||||||
else:
|
|
||||||
frames = frames[:max_frames]
|
|
||||||
return frames # (max_frames, 63)
|
|
||||||
|
|
||||||
def process_row(row, base_path, max_frames=100):
|
def get_features_sequence(landmarks_seq, max_frames=96):
|
||||||
|
if landmarks_seq is None or len(landmarks_seq) == 0:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Center on wrist (landmark 0)
|
||||||
|
landmarks_seq = landmarks_seq - landmarks_seq[:, 0:1, :]
|
||||||
|
|
||||||
|
# Rough scale normalization (using index finger length as reference)
|
||||||
|
scale = np.linalg.norm(landmarks_seq[:, 8] - landmarks_seq[:, 5], axis=1, keepdims=True)
|
||||||
|
scale = np.maximum(scale, 1e-6)
|
||||||
|
landmarks_seq /= scale
|
||||||
|
|
||||||
|
# Flatten → (T, 63)
|
||||||
|
seq = landmarks_seq.reshape(landmarks_seq.shape[0], -1)
|
||||||
|
|
||||||
|
# Pad / truncate
|
||||||
|
if len(seq) < max_frames:
|
||||||
|
pad = np.zeros((max_frames - len(seq), seq.shape[1]), dtype=np.float32)
|
||||||
|
seq = np.concatenate([seq, pad], axis=0)
|
||||||
|
else:
|
||||||
|
seq = seq[:max_frames]
|
||||||
|
|
||||||
|
return seq.astype(np.float32)
|
||||||
|
|
||||||
|
def process_row(row, base_path, max_frames=96):
|
||||||
path = os.path.join(base_path, row['path'])
|
path = os.path.join(base_path, row['path'])
|
||||||
if not os.path.exists(path):
|
if not os.path.exists(path):
|
||||||
return None, None
|
return None, None
|
||||||
try:
|
lm = extract_hand_landmarks_from_parquet(path)
|
||||||
lm_seq = extract_hand_landmarks_from_parquet(path)
|
feat = get_features_sequence(lm, max_frames)
|
||||||
feat_seq = get_features_sequence(lm_seq, max_frames)
|
if feat is None:
|
||||||
return feat_seq, row['sign']
|
|
||||||
except:
|
|
||||||
return None, None
|
return None, None
|
||||||
|
return feat, row['sign']
|
||||||
|
|
||||||
# ===============================
|
# ===============================
|
||||||
# LOAD + PROCESS DATA
|
# LOAD & PROCESS (with progress)
|
||||||
# ===============================
|
# ===============================
|
||||||
base_path = "asl_kaggle"
|
base_path = "asl_kaggle" # ← change if needed
|
||||||
train_df, sign_to_idx = load_kaggle_asl_data(base_path)
|
train_df, sign_to_idx = load_kaggle_asl_data(base_path)
|
||||||
|
|
||||||
|
print("Processing videos...")
|
||||||
rows = [row for _, row in train_df.iterrows()]
|
rows = [row for _, row in train_df.iterrows()]
|
||||||
X, y = [], []
|
|
||||||
|
|
||||||
func = partial(process_row, base_path=base_path, max_frames=100)
|
|
||||||
with Pool(cpu_count()) as pool:
|
with Pool(cpu_count()) as pool:
|
||||||
for feat_seq, sign in pool.map(func, rows):
|
results = list(tqdm(pool.imap(
|
||||||
if feat_seq is not None:
|
partial(process_row, base_path=base_path, max_frames=96),
|
||||||
X.append(feat_seq)
|
rows
|
||||||
|
), total=len(rows)))
|
||||||
|
|
||||||
|
X, y = [], []
|
||||||
|
for feat, sign in results:
|
||||||
|
if feat is not None:
|
||||||
|
X.append(feat)
|
||||||
y.append(sign)
|
y.append(sign)
|
||||||
|
|
||||||
X = np.stack(X) # (N, T, 63)
|
X = np.stack(X) # (N, T, 63)
|
||||||
y = np.array(y)
|
print(f"Loaded {len(X)} valid samples | shape: {X.shape}")
|
||||||
print("Samples:", len(X))
|
|
||||||
print("Sequence shape:", X.shape[1:])
|
# Global normalization (very important!)
|
||||||
|
scaler = StandardScaler()
|
||||||
|
X_reshaped = X.reshape(-1, X.shape[-1])
|
||||||
|
X_reshaped = scaler.fit_transform(X_reshaped)
|
||||||
|
X = X_reshaped.reshape(X.shape)
|
||||||
|
|
||||||
# ===============================
|
# ===============================
|
||||||
# LABEL ENCODING
|
# LABELS
|
||||||
# ===============================
|
# ===============================
|
||||||
|
from sklearn.preprocessing import LabelEncoder
|
||||||
le = LabelEncoder()
|
le = LabelEncoder()
|
||||||
y = le.fit_transform(y)
|
y = le.fit_transform(y)
|
||||||
num_classes = len(le.classes_)
|
num_classes = len(le.classes_)
|
||||||
print("Num classes:", num_classes)
|
print(f"Classes: {num_classes}")
|
||||||
|
|
||||||
# ===============================
|
# ===============================
|
||||||
# SPLIT
|
# SPLIT
|
||||||
# ===============================
|
# ===============================
|
||||||
X_train, X_test, y_train, y_test = train_test_split(
|
X_train, X_test, y_train, y_test = train_test_split(
|
||||||
X, y, test_size=0.2, stratify=y, random_state=42
|
X, y, test_size=0.15, stratify=y, random_state=42
|
||||||
)
|
)
|
||||||
|
|
||||||
# ===============================
|
# ===============================
|
||||||
# DATASET
|
# DATASET + DATALOADER
|
||||||
# ===============================
|
# ===============================
|
||||||
class ASLSequenceDataset(Dataset):
|
class ASLSequenceDataset(Dataset):
|
||||||
def __init__(self, X, y):
|
def __init__(self, X, y):
|
||||||
self.X = torch.tensor(X, dtype=torch.float32)
|
self.X = torch.from_numpy(X).float()
|
||||||
self.y = torch.tensor(y, dtype=torch.long)
|
self.y = torch.from_numpy(y).long()
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return len(self.X)
|
return len(self.X)
|
||||||
@@ -150,115 +154,158 @@ class ASLSequenceDataset(Dataset):
|
|||||||
def __getitem__(self, idx):
|
def __getitem__(self, idx):
|
||||||
return self.X[idx], self.y[idx]
|
return self.X[idx], self.y[idx]
|
||||||
|
|
||||||
train_loader = DataLoader(ASLSequenceDataset(X_train, y_train), batch_size=64, shuffle=True, pin_memory=True)
|
train_loader = DataLoader(ASLSequenceDataset(X_train, y_train),
|
||||||
test_loader = DataLoader(ASLSequenceDataset(X_test, y_test), batch_size=64, shuffle=False, pin_memory=True)
|
batch_size=64, shuffle=True, num_workers=4, pin_memory=True)
|
||||||
|
test_loader = DataLoader(ASLSequenceDataset(X_test, y_test),
|
||||||
|
batch_size=96, shuffle=False, num_workers=4, pin_memory=True)
|
||||||
|
|
||||||
# ===============================
|
# ===============================
|
||||||
# TRANSFORMER MODEL
|
# MODEL
|
||||||
# ===============================
|
# ===============================
|
||||||
class PositionalEncoding(nn.Module):
|
class PositionalEncoding(nn.Module):
|
||||||
def __init__(self, d_model, max_len=100):
|
def __init__(self, d_model, max_len=128):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
pe = torch.zeros(max_len, d_model)
|
pe = torch.zeros(max_len, d_model)
|
||||||
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
||||||
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0)/d_model))
|
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
||||||
pe[:, 0::2] = torch.sin(position*div_term)
|
pe[:, 0::2] = torch.sin(position * div_term)
|
||||||
pe[:, 1::2] = torch.cos(position*div_term)
|
pe[:, 1::2] = torch.cos(position * div_term)
|
||||||
self.register_buffer('pe', pe.unsqueeze(0))
|
self.register_buffer('pe', pe.unsqueeze(0))
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
return x + self.pe[:, :x.size(1), :]
|
return x + self.pe[:, :x.size(1)]
|
||||||
|
|
||||||
class TransformerASL(nn.Module):
|
class TransformerASL(nn.Module):
|
||||||
def __init__(self, input_dim, num_classes, d_model=256, nhead=8, num_layers=4):
|
def __init__(self, input_dim=63, num_classes=250, d_model=192, nhead=6, num_layers=4):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.proj = nn.Linear(input_dim, d_model)
|
self.proj = nn.Linear(input_dim, d_model)
|
||||||
self.norm = nn.LayerNorm(d_model)
|
self.norm_in = nn.LayerNorm(d_model)
|
||||||
|
|
||||||
self.pos = PositionalEncoding(d_model)
|
self.pos = PositionalEncoding(d_model)
|
||||||
|
|
||||||
encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=1024,
|
encoder_layer = nn.TransformerEncoderLayer(
|
||||||
dropout=0.1, activation='gelu', batch_first=True, norm_first=True)
|
d_model=d_model,
|
||||||
|
nhead=nhead,
|
||||||
|
dim_feedforward=d_model*4,
|
||||||
|
dropout=0.15,
|
||||||
|
activation='gelu',
|
||||||
|
batch_first=True,
|
||||||
|
norm_first=True
|
||||||
|
)
|
||||||
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
||||||
|
|
||||||
self.fc = nn.Sequential(
|
self.head = nn.Sequential(
|
||||||
nn.Linear(d_model, 512),
|
nn.LayerNorm(d_model),
|
||||||
nn.BatchNorm1d(512),
|
nn.Dropout(0.25),
|
||||||
nn.GELU(),
|
nn.Linear(d_model, num_classes)
|
||||||
nn.Dropout(0.3),
|
|
||||||
nn.Linear(512, num_classes)
|
|
||||||
)
|
)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x, key_padding_mask=None):
|
||||||
x = self.proj(x)
|
x = self.proj(x)
|
||||||
x = self.norm(x)
|
x = self.norm_in(x)
|
||||||
x = self.pos(x)
|
x = self.pos(x)
|
||||||
x = self.encoder(x) # (B, T, d_model)
|
|
||||||
x = x.mean(dim=1) # temporal average
|
x = self.encoder(x, src_key_padding_mask=key_padding_mask)
|
||||||
x = self.fc(x)
|
x = x.mean(dim=1) # global average pooling
|
||||||
|
x = self.head(x)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
model = TransformerASL(input_dim=X.shape[2], num_classes=num_classes).to(device)
|
model = TransformerASL(input_dim=63, num_classes=num_classes).to(device)
|
||||||
print("Parameters:", sum(p.numel() for p in model.parameters()))
|
print(f"Model parameters: {sum(p.numel() for p in model.parameters()):,}")
|
||||||
|
|
||||||
# ===============================
|
# ===============================
|
||||||
# TRAIN SETUP
|
# TRAINING SETUP
|
||||||
# ===============================
|
# ===============================
|
||||||
criterion = nn.CrossEntropyLoss(label_smoothing=0.1)
|
criterion = nn.CrossEntropyLoss(label_smoothing=0.05)
|
||||||
optimizer = optim.AdamW(model.parameters(), lr=3e-4, weight_decay=1e-4)
|
optimizer = optim.AdamW(model.parameters(), lr=8e-4, weight_decay=1e-4, betas=(0.9, 0.98))
|
||||||
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10)
|
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=15, T_mult=2)
|
||||||
|
|
||||||
# ===============================
|
# ===============================
|
||||||
# TRAIN / EVAL FUNCTIONS
|
# TRAIN / EVAL
|
||||||
# ===============================
|
# ===============================
|
||||||
|
def create_padding_mask(seq_len, max_len):
|
||||||
|
# True = ignore this position
|
||||||
|
return torch.arange(max_len, device=device)[None, :] >= seq_len[:, None]
|
||||||
|
|
||||||
def train_epoch():
|
def train_epoch():
|
||||||
model.train()
|
model.train()
|
||||||
total, correct, loss_sum = 0, 0, 0
|
total_loss = 0
|
||||||
for x, y in train_loader:
|
correct = 0
|
||||||
|
total = 0
|
||||||
|
|
||||||
|
for x, y in tqdm(train_loader, desc="Train"):
|
||||||
x, y = x.to(device), y.to(device)
|
x, y = x.to(device), y.to(device)
|
||||||
|
|
||||||
|
# Very simple length heuristic (can be improved later)
|
||||||
|
real_lengths = (x.abs().sum(dim=2) > 1e-6).sum(dim=1)
|
||||||
|
mask = create_padding_mask(real_lengths, x.size(1))
|
||||||
|
|
||||||
optimizer.zero_grad(set_to_none=True)
|
optimizer.zero_grad(set_to_none=True)
|
||||||
logits = model(x)
|
logits = model(x, key_padding_mask=mask)
|
||||||
|
|
||||||
loss = criterion(logits, y)
|
loss = criterion(logits, y)
|
||||||
loss.backward()
|
loss.backward()
|
||||||
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
|
||||||
|
# STRONG clipping — very important for landmarks
|
||||||
|
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=0.8)
|
||||||
|
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
loss_sum += loss.item()
|
|
||||||
correct += (logits.argmax(1) == y).sum().item()
|
total_loss += loss.item()
|
||||||
|
correct += (logits.argmax(dim=-1) == y).sum().item()
|
||||||
total += y.size(0)
|
total += y.size(0)
|
||||||
return loss_sum/len(train_loader), 100*correct/total
|
|
||||||
|
# Debug exploding gradients
|
||||||
|
if torch.isnan(loss) or grad_norm > 50:
|
||||||
|
print(f"WARNING - NaN or huge grad! norm={grad_norm:.2f}")
|
||||||
|
|
||||||
|
return total_loss / len(train_loader), correct / total * 100
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def evaluate():
|
def evaluate():
|
||||||
model.eval()
|
model.eval()
|
||||||
total, correct = 0, 0
|
correct = 0
|
||||||
|
total = 0
|
||||||
for x, y in test_loader:
|
for x, y in test_loader:
|
||||||
x, y = x.to(device), y.to(device)
|
x, y = x.to(device), y.to(device)
|
||||||
logits = model(x)
|
real_lengths = (x.abs().sum(dim=2) > 1e-6).sum(dim=1)
|
||||||
correct += (logits.argmax(1) == y).sum().item()
|
mask = create_padding_mask(real_lengths, x.size(1))
|
||||||
|
|
||||||
|
logits = model(x, key_padding_mask=mask)
|
||||||
|
correct += (logits.argmax(dim=-1) == y).sum().item()
|
||||||
total += y.size(0)
|
total += y.size(0)
|
||||||
return 100*correct/total
|
return correct / total * 100
|
||||||
|
|
||||||
# ===============================
|
# ===============================
|
||||||
# TRAIN LOOP
|
# TRAINING LOOP
|
||||||
# ===============================
|
# ===============================
|
||||||
best_acc = 0
|
best_acc = 0
|
||||||
patience = 15
|
patience = 18
|
||||||
wait = 0
|
wait = 0
|
||||||
epochs = 50
|
epochs = 80
|
||||||
|
|
||||||
for epoch in range(epochs):
|
for epoch in range(epochs):
|
||||||
loss, train_acc = train_epoch()
|
loss, train_acc = train_epoch()
|
||||||
test_acc = evaluate()
|
test_acc = evaluate()
|
||||||
|
|
||||||
|
print(f"[{epoch+1:2d}/{epochs}] loss: {loss:.4f} | train: {train_acc:.2f}% | test: {test_acc:.2f}%")
|
||||||
|
|
||||||
scheduler.step()
|
scheduler.step()
|
||||||
print(f"Epoch {epoch+1}/{epochs} | Loss {loss:.4f} | Train {train_acc:.2f}% | Test {test_acc:.2f}%")
|
|
||||||
|
|
||||||
if test_acc > best_acc:
|
if test_acc > best_acc:
|
||||||
best_acc = test_acc
|
best_acc = test_acc
|
||||||
wait = 0
|
wait = 0
|
||||||
torch.save({"model": model.state_dict(), "label_encoder": le}, "asl_transformer_full.pth")
|
torch.save({
|
||||||
|
'model': model.state_dict(),
|
||||||
|
'optimizer': optimizer.state_dict(),
|
||||||
|
'scaler': scaler,
|
||||||
|
'label_encoder_classes': le.classes_
|
||||||
|
}, "best_asl_transformer.pth")
|
||||||
|
print("→ Saved new best model")
|
||||||
else:
|
else:
|
||||||
wait += 1
|
wait += 1
|
||||||
if wait >= patience:
|
if wait >= patience:
|
||||||
print("Early stopping")
|
print("Early stopping triggered")
|
||||||
break
|
break
|
||||||
|
|
||||||
print("Best accuracy:", best_acc)
|
print(f"\nBest test accuracy achieved: {best_acc:.2f}%")
|
||||||
Reference in New Issue
Block a user