grok lock in pt 2

This commit is contained in:
2026-01-10 23:13:18 -06:00
parent f66049f6ea
commit ea0cb9bd87

View File

@@ -1,6 +1,3 @@
# ===============================
# IMPORTS
# ===============================
import os import os
import json import json
import math import math
@@ -10,35 +7,31 @@ import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
import torch.optim as optim import torch.optim as optim
from torch.utils.data import Dataset, DataLoader from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import LabelEncoder, StandardScaler
from multiprocessing import Pool, cpu_count from multiprocessing import Pool, cpu_count
from functools import partial from functools import partial
from tqdm import tqdm from tqdm import tqdm
# ===============================
# DEVICE
# ===============================
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
if device.type == "cuda":
print("GPU:", torch.cuda.get_device_name(0))
torch.backends.cudnn.benchmark = True
# ===============================
# DATA LOADING
# ===============================
def load_kaggle_asl_data(base_path): def load_kaggle_asl_data(base_path):
train_df = pd.read_csv(os.path.join(base_path, "train.csv")) train_df = pd.read_csv(os.path.join(base_path, "train.csv"))
with open(os.path.join(base_path, "sign_to_prediction_index_map.json")) as f: with open(os.path.join(base_path, "sign_to_prediction_index_map.json")) as f:
sign_to_idx = json.load(f) sign_to_idx = json.load(f)
return train_df, sign_to_idx return train_df, sign_to_idx
def extract_hand_landmarks_from_parquet(path): def extract_hand_landmarks_from_parquet(path):
try: try:
df = pd.read_parquet(path) df = pd.read_parquet(path)
hand = df[df["type"].isin(["left_hand", "right_hand"])] # Take either left or right hand - prefer the one with more landmarks
left = df[df["type"] == "left_hand"]
right = df[df["type"] == "right_hand"]
hand = left if len(left) >= len(right) else right
if len(hand) == 0: if len(hand) == 0:
return None return None
@@ -53,115 +46,62 @@ def extract_hand_landmarks_from_parquet(path):
if len(lm) == 0: if len(lm) == 0:
lm_list.append([0.0, 0.0, 0.0]) lm_list.append([0.0, 0.0, 0.0])
else: else:
lm_list.append([lm['x'].values[0], lm['y'].values[0], lm['z'].values[0]]) lm_list.append([
float(lm['x'].iloc[0]),
float(lm['y'].iloc[0]),
float(lm['z'].iloc[0])
])
landmarks_seq.append(lm_list) landmarks_seq.append(lm_list)
return np.array(landmarks_seq, dtype=np.float32) # (T, 21, 3) return np.array(landmarks_seq, dtype=np.float32) # (T, 21, 3)
except: except Exception:
return None return None
def get_features_sequence(landmarks_seq, max_frames=96):
def get_features_sequence(landmarks_seq, max_frames=100):
if landmarks_seq is None or len(landmarks_seq) == 0: if landmarks_seq is None or len(landmarks_seq) == 0:
return None return None
# Center on wrist (landmark 0) # Center on wrist
landmarks_seq = landmarks_seq - landmarks_seq[:, 0:1, :] landmarks_seq = landmarks_seq - landmarks_seq[:, 0:1, :]
# Rough scale normalization (using index finger length as reference) # Better scale: distance between index finger tip and middle finger tip
scale = np.linalg.norm(landmarks_seq[:, 8] - landmarks_seq[:, 5], axis=1, keepdims=True) scale = np.linalg.norm(landmarks_seq[:, 8] - landmarks_seq[:, 12], axis=1, keepdims=True)
scale = np.maximum(scale, 1e-6) scale = np.maximum(scale, 1e-6)
landmarks_seq /= scale landmarks_seq = landmarks_seq / scale
# Flatten (T, 63) # Flatten to (T, 63)
seq = landmarks_seq.reshape(landmarks_seq.shape[0], -1) seq = landmarks_seq.reshape(landmarks_seq.shape[0], -1)
# Pad / truncate # Pad or truncate
if len(seq) < max_frames: if len(seq) < max_frames:
pad = np.zeros((max_frames - len(seq), seq.shape[1]), dtype=np.float32) pad = np.zeros((max_frames - len(seq), seq.shape[1]), dtype=np.float32)
seq = np.concatenate([seq, pad], axis=0) seq = np.concatenate([seq, pad], axis=0)
else: else:
seq = seq[:max_frames] seq = seq[:max_frames]
return seq.astype(np.float32) return seq
def process_row(row, base_path, max_frames=96):
def process_row(row, base_path, max_frames=100):
path = os.path.join(base_path, row['path']) path = os.path.join(base_path, row['path'])
if not os.path.exists(path): if not os.path.exists(path):
return None, None return None, None
lm = extract_hand_landmarks_from_parquet(path)
feat = get_features_sequence(lm, max_frames) try:
if feat is None: lm_seq = extract_hand_landmarks_from_parquet(path)
if lm_seq is None:
return None, None return None, None
return feat, row['sign']
# =============================== feat_seq = get_features_sequence(lm_seq, max_frames)
# LOAD & PROCESS (with progress) if feat_seq is None:
# =============================== return None, None
base_path = "asl_kaggle" # ← change if needed
train_df, sign_to_idx = load_kaggle_asl_data(base_path)
print("Processing videos...") return feat_seq, row['sign']
rows = [row for _, row in train_df.iterrows()] except Exception:
return None, None
with Pool(cpu_count()) as pool:
results = list(tqdm(pool.imap(
partial(process_row, base_path=base_path, max_frames=96),
rows
), total=len(rows)))
X, y = [], []
for feat, sign in results:
if feat is not None:
X.append(feat)
y.append(sign)
X = np.stack(X) # (N, T, 63)
print(f"Loaded {len(X)} valid samples | shape: {X.shape}")
# Global normalization (very important!)
scaler = StandardScaler()
X_reshaped = X.reshape(-1, X.shape[-1])
X_reshaped = scaler.fit_transform(X_reshaped)
X = X_reshaped.reshape(X.shape)
# ===============================
# LABELS
# ===============================
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
y = le.fit_transform(y)
num_classes = len(le.classes_)
print(f"Classes: {num_classes}")
# ===============================
# SPLIT
# ===============================
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.15, stratify=y, random_state=42
)
# ===============================
# DATASET + DATALOADER
# ===============================
class ASLSequenceDataset(Dataset):
def __init__(self, X, y):
self.X = torch.from_numpy(X).float()
self.y = torch.from_numpy(y).long()
def __len__(self):
return len(self.X)
def __getitem__(self, idx):
return self.X[idx], self.y[idx]
train_loader = DataLoader(ASLSequenceDataset(X_train, y_train),
batch_size=64, shuffle=True, num_workers=4, pin_memory=True)
test_loader = DataLoader(ASLSequenceDataset(X_test, y_test),
batch_size=96, shuffle=False, num_workers=4, pin_memory=True)
# ===============================
# MODEL
# ===============================
class PositionalEncoding(nn.Module): class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=128): def __init__(self, d_model, max_len=128):
super().__init__() super().__init__()
@@ -175,12 +115,12 @@ class PositionalEncoding(nn.Module):
def forward(self, x): def forward(self, x):
return x + self.pe[:, :x.size(1)] return x + self.pe[:, :x.size(1)]
class TransformerASL(nn.Module): class TransformerASL(nn.Module):
def __init__(self, input_dim=63, num_classes=250, d_model=192, nhead=6, num_layers=4): def __init__(self, input_dim=63, num_classes=250, d_model=192, nhead=6, num_layers=4):
super().__init__() super().__init__()
self.proj = nn.Linear(input_dim, d_model) self.proj = nn.Linear(input_dim, d_model)
self.norm_in = nn.LayerNorm(d_model) self.norm_in = nn.LayerNorm(d_model)
self.pos = PositionalEncoding(d_model) self.pos = PositionalEncoding(d_model)
encoder_layer = nn.TransformerEncoderLayer( encoder_layer = nn.TransformerEncoderLayer(
@@ -204,41 +144,150 @@ class TransformerASL(nn.Module):
x = self.proj(x) x = self.proj(x)
x = self.norm_in(x) x = self.norm_in(x)
x = self.pos(x) x = self.pos(x)
x = self.encoder(x, src_key_padding_mask=key_padding_mask) x = self.encoder(x, src_key_padding_mask=key_padding_mask)
x = x.mean(dim=1) # global average pooling x = x.mean(dim=1) # global average pooling
x = self.head(x) return self.head(x)
return x
def create_padding_mask(lengths, max_len):
return torch.arange(max_len, device=lengths.device)[None, :] >= lengths[:, None]
def main():
# ===============================
# DEVICE SETUP
# ===============================
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
if device.type == "cuda":
print("GPU:", torch.cuda.get_device_name(0))
# ===============================
# PATHS & PARAMETERS
# ===============================
base_path = "asl_kaggle" # ← CHANGE THIS TO YOUR ACTUAL FOLDER
max_frames = 100
# ===============================
# DATA PROCESSING
# ===============================
print("Loading metadata...")
train_df, sign_to_idx = load_kaggle_asl_data(base_path)
print(f"Processing {len(train_df)} videos...")
rows = [row for _, row in train_df.iterrows()]
with Pool(cpu_count()) as pool:
results = list(tqdm(
pool.imap(
partial(process_row, base_path=base_path, max_frames=max_frames),
rows
),
total=len(rows),
desc="Processing"
))
X, y = [], []
for feat, sign in results:
if feat is not None:
X.append(feat)
y.append(sign)
if not X:
print("No valid sequences found!")
return
X = np.stack(X)
print(f"Loaded {len(X)} valid samples | shape: {X.shape}")
# Global normalization - very important!
print("Before global norm → mean:", X.mean(), "std:", X.std())
X = np.clip(X, -5.0, 5.0) # prevent crazy outliers
mean = X.mean(axis=(0, 1), keepdims=True)
std = X.std(axis=(0, 1), keepdims=True) + 1e-8
X = (X - mean) / std
print("After global norm → mean:", X.mean(), "std:", X.std())
# ===============================
# LABELS
# ===============================
le = LabelEncoder()
y = le.fit_transform(y)
num_classes = len(le.classes_)
print(f"Number of classes: {num_classes}")
# ===============================
# SPLIT
# ===============================
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.15, stratify=y, random_state=42
)
# ===============================
# DATASET & LOADERS
# ===============================
class ASLSequenceDataset(Dataset):
def __init__(self, X, y):
self.X = torch.from_numpy(X).float()
self.y = torch.from_numpy(y).long()
def __len__(self):
return len(self.X)
def __getitem__(self, idx):
return self.X[idx], self.y[idx]
train_loader = DataLoader(
ASLSequenceDataset(X_train, y_train),
batch_size=64,
shuffle=True,
num_workers=4,
pin_memory=True
)
test_loader = DataLoader(
ASLSequenceDataset(X_test, y_test),
batch_size=96,
shuffle=False,
num_workers=4,
pin_memory=True
)
# ===============================
# MODEL
# ===============================
model = TransformerASL(
input_dim=63,
num_classes=num_classes,
d_model=192,
nhead=6,
num_layers=4
).to(device)
model = TransformerASL(input_dim=63, num_classes=num_classes).to(device)
print(f"Model parameters: {sum(p.numel() for p in model.parameters()):,}") print(f"Model parameters: {sum(p.numel() for p in model.parameters()):,}")
# =============================== # ===============================
# TRAINING SETUP # TRAINING SETUP
# =============================== # ===============================
criterion = nn.CrossEntropyLoss(label_smoothing=0.05) criterion = nn.CrossEntropyLoss(label_smoothing=0.05)
optimizer = optim.AdamW(model.parameters(), lr=8e-4, weight_decay=1e-4, betas=(0.9, 0.98)) optimizer = optim.AdamW(model.parameters(), lr=5e-4, weight_decay=1e-4)
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=15, T_mult=2) scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10)
# =============================== # ===============================
# TRAIN / EVAL # TRAIN / EVAL FUNCTIONS
# =============================== # ===============================
def create_padding_mask(seq_len, max_len):
# True = ignore this position
return torch.arange(max_len, device=device)[None, :] >= seq_len[:, None]
def train_epoch(): def train_epoch():
model.train() model.train()
total_loss = 0 total_loss = 0
correct = 0 correct = 0
total = 0 total = 0
for x, y in tqdm(train_loader, desc="Train"): for x, y in tqdm(train_loader, desc="Training"):
x, y = x.to(device), y.to(device) x, y = x.to(device), y.to(device)
# Very simple length heuristic (can be improved later) # Rough length estimation
real_lengths = (x.abs().sum(dim=2) > 1e-6).sum(dim=1) lengths = (x.abs().sum(dim=2) > 1e-5).sum(dim=1)
mask = create_padding_mask(real_lengths, x.size(1)) mask = create_padding_mask(lengths, x.size(1))
optimizer.zero_grad(set_to_none=True) optimizer.zero_grad(set_to_none=True)
logits = model(x, key_padding_mask=mask) logits = model(x, key_padding_mask=mask)
@@ -246,19 +295,17 @@ def train_epoch():
loss = criterion(logits, y) loss = criterion(logits, y)
loss.backward() loss.backward()
# STRONG clipping — very important for landmarks
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=0.8) grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=0.8)
if torch.isnan(loss) or grad_norm > 20:
print(f"Warning - large grad or NaN! norm = {grad_norm:.2f}")
optimizer.step() optimizer.step()
total_loss += loss.item() total_loss += loss.item()
correct += (logits.argmax(dim=-1) == y).sum().item() correct += (logits.argmax(dim=-1) == y).sum().item()
total += y.size(0) total += y.size(0)
# Debug exploding gradients
if torch.isnan(loss) or grad_norm > 50:
print(f"WARNING - NaN or huge grad! norm={grad_norm:.2f}")
return total_loss / len(train_loader), correct / total * 100 return total_loss / len(train_loader), correct / total * 100
@torch.no_grad() @torch.no_grad()
@@ -268,27 +315,27 @@ def evaluate():
total = 0 total = 0
for x, y in test_loader: for x, y in test_loader:
x, y = x.to(device), y.to(device) x, y = x.to(device), y.to(device)
real_lengths = (x.abs().sum(dim=2) > 1e-6).sum(dim=1) lengths = (x.abs().sum(dim=2) > 1e-5).sum(dim=1)
mask = create_padding_mask(real_lengths, x.size(1)) mask = create_padding_mask(lengths, x.size(1))
logits = model(x, key_padding_mask=mask) logits = model(x, key_padding_mask=mask)
correct += (logits.argmax(dim=-1) == y).sum().item() correct += (logits.argmax(dim=-1) == y).sum().item()
total += y.size(0) total += y.size(0)
return correct / total * 100 return correct / total * 100 if total > 0 else 0
# =============================== # ===============================
# TRAINING LOOP # TRAINING LOOP
# =============================== # ===============================
best_acc = 0 best_acc = 0
patience = 18 patience = 15
wait = 0 wait = 0
epochs = 80 epochs = 60
for epoch in range(epochs): for epoch in range(epochs):
loss, train_acc = train_epoch() loss, train_acc = train_epoch()
test_acc = evaluate() test_acc = evaluate()
print(f"[{epoch+1:2d}/{epochs}] loss: {loss:.4f} | train: {train_acc:.2f}% | test: {test_acc:.2f}%") print(f"Epoch {epoch + 1:2d}/{epochs} | Loss: {loss:.4f} | Train: {train_acc:.2f}% | Test: {test_acc:.2f}%")
scheduler.step() scheduler.step()
@@ -298,14 +345,19 @@ for epoch in range(epochs):
torch.save({ torch.save({
'model': model.state_dict(), 'model': model.state_dict(),
'optimizer': optimizer.state_dict(), 'optimizer': optimizer.state_dict(),
'scaler': scaler, 'label_encoder': le.classes_,
'label_encoder_classes': le.classes_ 'epoch': epoch,
'acc': best_acc
}, "best_asl_transformer.pth") }, "best_asl_transformer.pth")
print("→ Saved new best model") print(" → New best model saved")
else: else:
wait += 1 wait += 1
if wait >= patience: if wait >= patience:
print("Early stopping triggered") print("Early stopping triggered")
break break
print(f"\nBest test accuracy achieved: {best_acc:.2f}%") print(f"\nTraining finished. Best test accuracy: {best_acc:.2f}%")
if __name__ == '__main__':
main()