im doing fine alright okay sun keep coming up each day, see it through my window shades

This commit is contained in:
2026-01-24 15:53:20 -06:00
parent 82197a70c0
commit c9ef43488b

View File

@@ -4,22 +4,30 @@ import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader, random_split
from concurrent.futures import ProcessPoolExecutor
from tqdm import tqdm
# --- CONFIGURATION ---
BASE_PATH = "asl_kaggle"
TARGET_FRAMES = 22
# Hand landmarks + Lip landmarks (approximate indices for high-value face points)
LIPS = [61, 146, 91, 181, 84, 17, 314, 405, 321, 375, 291, 308, 324, 318, 402, 317, 14, 87, 178, 88, 95]
HANDS = list(range(468, 543))
SELECTED_INDICES = LIPS + HANDS
NUM_FEATS = len(SELECTED_INDICES) * 3 # X, Y, Z for each selected point
NUM_FEATS = len(SELECTED_INDICES) * 3
# Training hyperparameters
BATCH_SIZE = 32
EPOCHS = 50
LEARNING_RATE = 0.001
TRAIN_SPLIT = 0.8
CHECKPOINT_DIR = "checkpoints"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# --- DATA PROCESSING ---
# --- DATA PROCESSING ---
def load_kaggle_metadata(base_path):
return pl.read_csv(os.path.join(base_path, "train.csv"))
@@ -28,7 +36,6 @@ def load_and_preprocess(path, base_path=BASE_PATH, target_frames=TARGET_FRAMES):
parquet_path = os.path.join(base_path, path)
df = pl.read_parquet(parquet_path)
# 1. Spatial Normalization (Nose Anchor)
anchors = (
df.filter((pl.col("type") == "face") & (pl.col("landmark_index") == 0))
.select([pl.col("frame"), pl.col("x").alias("nx"), pl.col("y").alias("ny"), pl.col("z").alias("nz")])
@@ -44,21 +51,28 @@ def load_and_preprocess(path, base_path=BASE_PATH, target_frames=TARGET_FRAMES):
.sort(["frame", "type", "landmark_index"])
)
# 2. Reshape & Feature Selection
# Get unique frames and total landmarks (543)
raw_tensor = processed.select(["x", "y", "z"]).to_numpy().reshape(-1, 543, 3)
# Slice to keep only Hands and Lips
reduced_tensor = raw_tensor[:, SELECTED_INDICES, :]
# 3. Temporal Normalization (Resample to fixed frame count)
curr_len = reduced_tensor.shape[0]
indices = np.linspace(0, curr_len - 1, num=target_frames).round().astype(int)
return reduced_tensor[indices]
# --- MODEL ARCHITECTURE ---
# --- DATASET CLASS ---
class ASLDataset(Dataset):
def __init__(self, tensors, labels):
self.tensors = tensors
self.labels = labels
def __len__(self):
return len(self.tensors)
def __getitem__(self, idx):
return self.tensors[idx], self.labels[idx]
# --- MODEL ARCHITECTURE ---
class ASLClassifier(nn.Module):
def __init__(self, num_classes, target_frames=TARGET_FRAMES, num_feats=NUM_FEATS):
super().__init__()
@@ -71,42 +85,153 @@ class ASLClassifier(nn.Module):
self.fc = nn.Linear(512, num_classes)
def forward(self, x):
# x: (Batch, Frames, Selected_Landmarks, 3)
x = x.view(x.shape[0], x.shape[1], -1) # Flatten landmarks/coords
x = x.transpose(1, 2) # (Batch, Features, Time)
x = x.view(x.shape[0], x.shape[1], -1)
x = x.transpose(1, 2)
x = F.relu(self.bn1(self.conv1(x)))
x = self.pool(x)
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool(x)
x = F.adaptive_avg_pool1d(x, 1).squeeze(-1)
x = self.dropout(x)
return self.fc(x)
# --- EXECUTION ---
# --- TRAINING FUNCTIONS ---
def train_epoch(model, dataloader, criterion, optimizer, device):
model.train()
running_loss = 0.0
correct = 0
total = 0
progress_bar = tqdm(dataloader, desc="Training")
for inputs, labels in progress_bar:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
progress_bar.set_postfix({
'loss': running_loss / (progress_bar.n + 1),
'acc': 100 * correct / total
})
epoch_loss = running_loss / len(dataloader)
epoch_acc = 100 * correct / total
return epoch_loss, epoch_acc
def validate(model, dataloader, criterion, device):
model.eval()
running_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in tqdm(dataloader, desc="Validation"):
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
running_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
val_loss = running_loss / len(dataloader)
val_acc = 100 * correct / total
return val_loss, val_acc
def save_checkpoint(model, optimizer, epoch, train_loss, val_loss, val_acc, checkpoint_dir):
os.makedirs(checkpoint_dir, exist_ok=True)
checkpoint = {
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'train_loss': train_loss,
'val_loss': val_loss,
'val_acc': val_acc,
}
path = os.path.join(checkpoint_dir, f'checkpoint_epoch_{epoch}.pt')
torch.save(checkpoint, path)
print(f"Checkpoint saved: {path}")
# --- EXECUTION ---
if __name__ == "__main__":
# Load metadata
asl_data = load_kaggle_metadata(BASE_PATH)
# Optimization: Process 100 samples to get a feel for the shape/speed
# Using multiprocessing to avoid the slow single-thread loop
paths = asl_data["path"].to_list()
# Create label mapping
unique_signs = sorted(asl_data["sign"].unique().to_list())
label_to_idx = {sign: idx for idx, sign in enumerate(unique_signs)}
labels = torch.tensor([label_to_idx[sign] for sign in asl_data["sign"].to_list()])
print(f"Number of classes: {len(unique_signs)}")
# Process data in parallel
paths = asl_data["path"].to_list()
print(f"Processing {len(paths)} files in parallel...")
with ProcessPoolExecutor() as executor:
results = list(tqdm(executor.map(load_and_preprocess, paths), total=len(paths)))
# Stack into one giant Torch tensor
dataset_tensor = torch.tensor(np.array(results), dtype=torch.float32)
print(f"Final Tensor Shape: {dataset_tensor.shape}")
# Shape: (100, 22, 96, 3) -> (Batch, Time, Landmarks, Coords)
# Initialize Model
num_unique_signs = asl_data["sign"].n_unique()
model = ASLClassifier(num_classes=num_unique_signs)
model.to(device)
# Test pass
output = model(dataset_tensor)
print(f"Model Output Shape: {output.shape}") # (100, 250)
# Create dataset and split
full_dataset = ASLDataset(dataset_tensor, labels)
train_size = int(TRAIN_SPLIT * len(full_dataset))
val_size = len(full_dataset) - train_size
train_dataset, val_dataset = random_split(full_dataset, [train_size, val_size])
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=0)
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=0)
print(f"Train samples: {train_size}, Validation samples: {val_size}")
# Initialize model, loss, optimizer
model = ASLClassifier(num_classes=len(unique_signs)).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=5)
# Training loop
best_val_acc = 0.0
print("\n" + "=" * 50)
print("Starting Training")
print("=" * 50 + "\n")
for epoch in range(EPOCHS):
print(f"\nEpoch [{epoch + 1}/{EPOCHS}]")
print("-" * 50)
train_loss, train_acc = train_epoch(model, train_loader, criterion, optimizer, device)
val_loss, val_acc = validate(model, val_loader, criterion, device)
scheduler.step(val_loss)
print(f"\nEpoch {epoch + 1} Summary:")
print(f" Train Loss: {train_loss:.4f} | Train Acc: {train_acc:.2f}%")
print(f" Val Loss: {val_loss:.4f} | Val Acc: {val_acc:.2f}%")
print(f" Learning Rate: {optimizer.param_groups[0]['lr']:.6f}")
# Save checkpoint if validation accuracy improved
if val_acc > best_val_acc:
best_val_acc = val_acc
save_checkpoint(model, optimizer, epoch + 1, train_loss, val_loss, val_acc, CHECKPOINT_DIR)
print(f" ✓ New best validation accuracy: {best_val_acc:.2f}%")
print("\n" + "=" * 50)
print("Training Complete!")
print(f"Best Validation Accuracy: {best_val_acc:.2f}%")
print("=" * 50)