chatgpt, i hate u
This commit is contained in:
226
training.py
226
training.py
@@ -5,7 +5,6 @@ import os
|
||||
import json
|
||||
import math
|
||||
import time
|
||||
import pickle
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
@@ -25,13 +24,12 @@ from functools import partial
|
||||
# ===============================
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
print(f"Using device: {device}")
|
||||
|
||||
if device.type == "cuda":
|
||||
print("GPU:", torch.cuda.get_device_name(0))
|
||||
torch.backends.cudnn.benchmark = True
|
||||
|
||||
# ===============================
|
||||
# DATA LOADING
|
||||
# DATA LOADING & FEATURE EXTRACTION
|
||||
# ===============================
|
||||
def load_kaggle_asl_data(base_path):
|
||||
train_df = pd.read_csv(os.path.join(base_path, "train.csv"))
|
||||
@@ -39,13 +37,12 @@ def load_kaggle_asl_data(base_path):
|
||||
sign_to_idx = json.load(f)
|
||||
return train_df, sign_to_idx
|
||||
|
||||
|
||||
def extract_hand_landmarks_from_parquet(path):
|
||||
df = pd.read_parquet(path)
|
||||
|
||||
left = df[df["type"] == "left_hand"]
|
||||
right = df[df["type"] == "right_hand"]
|
||||
|
||||
hand = None
|
||||
if len(left) > 0:
|
||||
hand = left
|
||||
elif len(right) > 0:
|
||||
@@ -53,67 +50,56 @@ def extract_hand_landmarks_from_parquet(path):
|
||||
else:
|
||||
return None
|
||||
|
||||
landmarks = []
|
||||
# Keep all frames
|
||||
frames = sorted(hand['frame'].unique())
|
||||
landmarks_seq = []
|
||||
|
||||
for frame in frames:
|
||||
lm_frame = hand[hand['frame'] == frame]
|
||||
lm_list = []
|
||||
for i in range(21):
|
||||
lm = hand[hand["landmark_index"] == i]
|
||||
lm = lm_frame[lm_frame['landmark_index'] == i]
|
||||
if len(lm) == 0:
|
||||
landmarks.append([0.0, 0.0, 0.0])
|
||||
lm_list.append([0.0, 0.0, 0.0])
|
||||
else:
|
||||
landmarks.append([
|
||||
lm["x"].mean(),
|
||||
lm["y"].mean(),
|
||||
lm["z"].mean()
|
||||
lm_list.append([
|
||||
lm['x'].mean(),
|
||||
lm['y'].mean(),
|
||||
lm['z'].mean()
|
||||
])
|
||||
landmarks_seq.append(lm_list)
|
||||
|
||||
return np.array(landmarks, dtype=np.float32)
|
||||
return np.array(landmarks_seq, dtype=np.float32) # (T, 21, 3)
|
||||
|
||||
|
||||
def get_features(landmarks):
|
||||
if landmarks is None:
|
||||
def get_features_sequence(landmarks_seq, max_frames=100):
|
||||
if landmarks_seq is None:
|
||||
return None
|
||||
# Center on wrist
|
||||
points = landmarks_seq - landmarks_seq[:, 0:1, :]
|
||||
scale = np.linalg.norm(points[:, 9, :], axis=1, keepdims=True)
|
||||
scale[scale < 1e-6] = 1.0
|
||||
points /= scale[:, np.newaxis, :]
|
||||
# Flatten per frame
|
||||
frames = points.reshape(points.shape[0], -1)
|
||||
# Pad or truncate
|
||||
if frames.shape[0] < max_frames:
|
||||
pad = np.zeros((max_frames - frames.shape[0], frames.shape[1]), dtype=np.float32)
|
||||
frames = np.vstack([frames, pad])
|
||||
else:
|
||||
frames = frames[:max_frames]
|
||||
return frames # (max_frames, 63)
|
||||
|
||||
wrist = landmarks[0]
|
||||
points = landmarks - wrist
|
||||
|
||||
scale = np.linalg.norm(points[9])
|
||||
if scale < 1e-6:
|
||||
scale = 1.0
|
||||
points /= scale
|
||||
|
||||
mean = points.mean(axis=0)
|
||||
std = points.std(axis=0) + 1e-6
|
||||
points = (points - mean) / std
|
||||
|
||||
features = points.flatten()
|
||||
|
||||
tips = [4, 8, 12, 16, 20]
|
||||
bases = [1, 5, 9, 13, 17]
|
||||
|
||||
tip_dist = []
|
||||
curl = []
|
||||
|
||||
for b, t in zip(bases, tips):
|
||||
curl.append(np.linalg.norm(points[t] - points[b]))
|
||||
|
||||
for i in range(len(tips) - 1):
|
||||
tip_dist.append(np.linalg.norm(points[tips[i]] - points[tips[i+1]]))
|
||||
|
||||
return np.concatenate([features, tip_dist, curl]).astype(np.float32)
|
||||
|
||||
|
||||
def process_row(row, base_path):
|
||||
path = os.path.join(base_path, row["path"])
|
||||
def process_row(row, base_path, max_frames=100):
|
||||
path = os.path.join(base_path, row['path'])
|
||||
if not os.path.exists(path):
|
||||
return None, None
|
||||
|
||||
try:
|
||||
lm = extract_hand_landmarks_from_parquet(path)
|
||||
feat = get_features(lm)
|
||||
return feat, row["sign"]
|
||||
lm_seq = extract_hand_landmarks_from_parquet(path)
|
||||
feat_seq = get_features_sequence(lm_seq, max_frames)
|
||||
return feat_seq, row['sign']
|
||||
except:
|
||||
return None, None
|
||||
|
||||
|
||||
# ===============================
|
||||
# LOAD + PROCESS DATA
|
||||
# ===============================
|
||||
@@ -123,18 +109,17 @@ train_df, sign_to_idx = load_kaggle_asl_data(base_path)
|
||||
rows = [row for _, row in train_df.iterrows()]
|
||||
X, y = [], []
|
||||
|
||||
func = partial(process_row, base_path=base_path, max_frames=100)
|
||||
with Pool(cpu_count()) as pool:
|
||||
func = partial(process_row, base_path=base_path)
|
||||
for feat, sign in pool.map(func, rows):
|
||||
if feat is not None:
|
||||
X.append(feat)
|
||||
for feat_seq, sign in pool.map(func, rows):
|
||||
if feat_seq is not None:
|
||||
X.append(feat_seq)
|
||||
y.append(sign)
|
||||
|
||||
X = np.array(X, dtype=np.float32)
|
||||
X = np.stack(X) # (N, T, 63)
|
||||
y = np.array(y)
|
||||
|
||||
print("Samples:", len(X))
|
||||
print("Feature dim:", X.shape[1])
|
||||
print("Sequence shape:", X.shape[1:])
|
||||
|
||||
# ===============================
|
||||
# LABEL ENCODING
|
||||
@@ -142,6 +127,7 @@ print("Feature dim:", X.shape[1])
|
||||
le = LabelEncoder()
|
||||
y = le.fit_transform(y)
|
||||
num_classes = len(le.classes_)
|
||||
print("Num classes:", num_classes)
|
||||
|
||||
# ===============================
|
||||
# SPLIT
|
||||
@@ -153,7 +139,7 @@ X_train, X_test, y_train, y_test = train_test_split(
|
||||
# ===============================
|
||||
# DATASET
|
||||
# ===============================
|
||||
class ASLDataset(Dataset):
|
||||
class ASLSequenceDataset(Dataset):
|
||||
def __init__(self, X, y):
|
||||
self.X = torch.tensor(X, dtype=torch.float32)
|
||||
self.y = torch.tensor(y, dtype=torch.long)
|
||||
@@ -164,118 +150,92 @@ class ASLDataset(Dataset):
|
||||
def __getitem__(self, idx):
|
||||
return self.X[idx], self.y[idx]
|
||||
|
||||
|
||||
train_loader = DataLoader(
|
||||
ASLDataset(X_train, y_train),
|
||||
batch_size=256,
|
||||
shuffle=True,
|
||||
pin_memory=True
|
||||
)
|
||||
|
||||
test_loader = DataLoader(
|
||||
ASLDataset(X_test, y_test),
|
||||
batch_size=256,
|
||||
shuffle=False,
|
||||
pin_memory=True
|
||||
)
|
||||
train_loader = DataLoader(ASLSequenceDataset(X_train, y_train), batch_size=64, shuffle=True, pin_memory=True)
|
||||
test_loader = DataLoader(ASLSequenceDataset(X_test, y_test), batch_size=64, shuffle=False, pin_memory=True)
|
||||
|
||||
# ===============================
|
||||
# MODEL (FIXED)
|
||||
# TRANSFORMER MODEL
|
||||
# ===============================
|
||||
class TransformerASL(nn.Module):
|
||||
def __init__(self, input_dim, num_classes):
|
||||
class PositionalEncoding(nn.Module):
|
||||
def __init__(self, d_model, max_len=100):
|
||||
super().__init__()
|
||||
pe = torch.zeros(max_len, d_model)
|
||||
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
||||
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0)/d_model))
|
||||
pe[:, 0::2] = torch.sin(position*div_term)
|
||||
pe[:, 1::2] = torch.cos(position*div_term)
|
||||
self.register_buffer('pe', pe.unsqueeze(0))
|
||||
|
||||
self.proj = nn.Linear(input_dim, 256)
|
||||
self.norm = nn.LayerNorm(256)
|
||||
def forward(self, x):
|
||||
return x + self.pe[:, :x.size(1), :]
|
||||
|
||||
encoder_layer = nn.TransformerEncoderLayer(
|
||||
d_model=256,
|
||||
nhead=8,
|
||||
dim_feedforward=1024,
|
||||
dropout=0.1,
|
||||
activation="gelu",
|
||||
batch_first=True,
|
||||
norm_first=True
|
||||
class TransformerASL(nn.Module):
|
||||
def __init__(self, input_dim, num_classes, d_model=256, nhead=8, num_layers=4):
|
||||
super().__init__()
|
||||
self.proj = nn.Linear(input_dim, d_model)
|
||||
self.norm = nn.LayerNorm(d_model)
|
||||
self.pos = PositionalEncoding(d_model)
|
||||
|
||||
encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=1024,
|
||||
dropout=0.1, activation='gelu', batch_first=True, norm_first=True)
|
||||
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
||||
|
||||
self.fc = nn.Sequential(
|
||||
nn.Linear(d_model, 512),
|
||||
nn.BatchNorm1d(512),
|
||||
nn.GELU(),
|
||||
nn.Dropout(0.3),
|
||||
nn.Linear(512, num_classes)
|
||||
)
|
||||
|
||||
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=4)
|
||||
|
||||
self.fc1 = nn.Linear(256, 512)
|
||||
self.bn1 = nn.BatchNorm1d(512)
|
||||
self.drop1 = nn.Dropout(0.4)
|
||||
|
||||
self.fc2 = nn.Linear(512, 256)
|
||||
self.bn2 = nn.BatchNorm1d(256)
|
||||
self.drop2 = nn.Dropout(0.3)
|
||||
|
||||
self.out = nn.Linear(256, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.proj(x)
|
||||
x = self.norm(x)
|
||||
x = self.pos(x)
|
||||
x = self.encoder(x) # (B, T, d_model)
|
||||
x = x.mean(dim=1) # temporal average
|
||||
x = self.fc(x)
|
||||
return x
|
||||
|
||||
x = x.unsqueeze(1) # (B, 1, 256)
|
||||
x = self.encoder(x)
|
||||
x = x.squeeze(1)
|
||||
|
||||
x = F.gelu(self.bn1(self.fc1(x)))
|
||||
x = self.drop1(x)
|
||||
|
||||
x = F.gelu(self.bn2(self.fc2(x)))
|
||||
x = self.drop2(x)
|
||||
|
||||
return self.out(x)
|
||||
|
||||
|
||||
model = TransformerASL(X.shape[1], num_classes).to(device)
|
||||
model = TransformerASL(input_dim=X.shape[2], num_classes=num_classes).to(device)
|
||||
print("Parameters:", sum(p.numel() for p in model.parameters()))
|
||||
|
||||
# ===============================
|
||||
# TRAINING SETUP
|
||||
# TRAIN SETUP
|
||||
# ===============================
|
||||
criterion = nn.CrossEntropyLoss(label_smoothing=0.1)
|
||||
optimizer = optim.AdamW(model.parameters(), lr=3e-4, weight_decay=1e-4)
|
||||
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 10)
|
||||
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10)
|
||||
|
||||
# ===============================
|
||||
# TRAIN / EVAL
|
||||
# TRAIN / EVAL FUNCTIONS
|
||||
# ===============================
|
||||
def train_epoch():
|
||||
model.train()
|
||||
total, correct, loss_sum = 0, 0, 0
|
||||
|
||||
for x, y in train_loader:
|
||||
x, y = x.to(device), y.to(device)
|
||||
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
logits = model(x)
|
||||
loss = criterion(logits, y)
|
||||
loss.backward()
|
||||
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
||||
optimizer.step()
|
||||
|
||||
loss_sum += loss.item()
|
||||
correct += (logits.argmax(1) == y).sum().item()
|
||||
total += y.size(0)
|
||||
|
||||
return loss_sum / len(train_loader), 100 * correct / total
|
||||
|
||||
return loss_sum/len(train_loader), 100*correct/total
|
||||
|
||||
@torch.no_grad()
|
||||
def evaluate():
|
||||
model.eval()
|
||||
total, correct = 0, 0
|
||||
|
||||
for x, y in test_loader:
|
||||
x, y = x.to(device), y.to(device)
|
||||
logits = model(x)
|
||||
correct += (logits.argmax(1) == y).sum().item()
|
||||
total += y.size(0)
|
||||
|
||||
return 100 * correct / total
|
||||
|
||||
return 100*correct/total
|
||||
|
||||
# ===============================
|
||||
# TRAIN LOOP
|
||||
@@ -289,22 +249,14 @@ for epoch in range(epochs):
|
||||
loss, train_acc = train_epoch()
|
||||
test_acc = evaluate()
|
||||
scheduler.step()
|
||||
|
||||
print(f"Epoch {epoch+1}/{epochs} | "
|
||||
f"Loss {loss:.4f} | "
|
||||
f"Train {train_acc:.2f}% | "
|
||||
f"Test {test_acc:.2f}%")
|
||||
print(f"Epoch {epoch+1}/{epochs} | Loss {loss:.4f} | Train {train_acc:.2f}% | Test {test_acc:.2f}%")
|
||||
|
||||
if test_acc > best_acc:
|
||||
best_acc = test_acc
|
||||
wait = 0
|
||||
torch.save({
|
||||
"model": model.state_dict(),
|
||||
"label_encoder": le
|
||||
}, "asl_transformer_fixed.pth")
|
||||
torch.save({"model": model.state_dict(), "label_encoder": le}, "asl_transformer_full.pth")
|
||||
else:
|
||||
wait += 1
|
||||
|
||||
if wait >= patience:
|
||||
print("Early stopping")
|
||||
break
|
||||
|
||||
Reference in New Issue
Block a user