chatgpt, i hate u

This commit is contained in:
2026-01-10 22:47:23 -06:00
parent abf57f95de
commit c209e036cb

View File

@@ -5,7 +5,6 @@ import os
import json
import math
import time
import pickle
import numpy as np
import pandas as pd
@@ -25,13 +24,12 @@ from functools import partial
# ===============================
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
if device.type == "cuda":
print("GPU:", torch.cuda.get_device_name(0))
torch.backends.cudnn.benchmark = True
# ===============================
# DATA LOADING
# DATA LOADING & FEATURE EXTRACTION
# ===============================
def load_kaggle_asl_data(base_path):
train_df = pd.read_csv(os.path.join(base_path, "train.csv"))
@@ -39,13 +37,12 @@ def load_kaggle_asl_data(base_path):
sign_to_idx = json.load(f)
return train_df, sign_to_idx
def extract_hand_landmarks_from_parquet(path):
df = pd.read_parquet(path)
left = df[df["type"] == "left_hand"]
right = df[df["type"] == "right_hand"]
hand = None
if len(left) > 0:
hand = left
elif len(right) > 0:
@@ -53,67 +50,56 @@ def extract_hand_landmarks_from_parquet(path):
else:
return None
landmarks = []
# Keep all frames
frames = sorted(hand['frame'].unique())
landmarks_seq = []
for frame in frames:
lm_frame = hand[hand['frame'] == frame]
lm_list = []
for i in range(21):
lm = hand[hand["landmark_index"] == i]
lm = lm_frame[lm_frame['landmark_index'] == i]
if len(lm) == 0:
landmarks.append([0.0, 0.0, 0.0])
lm_list.append([0.0, 0.0, 0.0])
else:
landmarks.append([
lm["x"].mean(),
lm["y"].mean(),
lm["z"].mean()
lm_list.append([
lm['x'].mean(),
lm['y'].mean(),
lm['z'].mean()
])
landmarks_seq.append(lm_list)
return np.array(landmarks, dtype=np.float32)
return np.array(landmarks_seq, dtype=np.float32) # (T, 21, 3)
def get_features(landmarks):
if landmarks is None:
def get_features_sequence(landmarks_seq, max_frames=100):
if landmarks_seq is None:
return None
# Center on wrist
points = landmarks_seq - landmarks_seq[:, 0:1, :]
scale = np.linalg.norm(points[:, 9, :], axis=1, keepdims=True)
scale[scale < 1e-6] = 1.0
points /= scale[:, np.newaxis, :]
# Flatten per frame
frames = points.reshape(points.shape[0], -1)
# Pad or truncate
if frames.shape[0] < max_frames:
pad = np.zeros((max_frames - frames.shape[0], frames.shape[1]), dtype=np.float32)
frames = np.vstack([frames, pad])
else:
frames = frames[:max_frames]
return frames # (max_frames, 63)
wrist = landmarks[0]
points = landmarks - wrist
scale = np.linalg.norm(points[9])
if scale < 1e-6:
scale = 1.0
points /= scale
mean = points.mean(axis=0)
std = points.std(axis=0) + 1e-6
points = (points - mean) / std
features = points.flatten()
tips = [4, 8, 12, 16, 20]
bases = [1, 5, 9, 13, 17]
tip_dist = []
curl = []
for b, t in zip(bases, tips):
curl.append(np.linalg.norm(points[t] - points[b]))
for i in range(len(tips) - 1):
tip_dist.append(np.linalg.norm(points[tips[i]] - points[tips[i+1]]))
return np.concatenate([features, tip_dist, curl]).astype(np.float32)
def process_row(row, base_path):
path = os.path.join(base_path, row["path"])
def process_row(row, base_path, max_frames=100):
path = os.path.join(base_path, row['path'])
if not os.path.exists(path):
return None, None
try:
lm = extract_hand_landmarks_from_parquet(path)
feat = get_features(lm)
return feat, row["sign"]
lm_seq = extract_hand_landmarks_from_parquet(path)
feat_seq = get_features_sequence(lm_seq, max_frames)
return feat_seq, row['sign']
except:
return None, None
# ===============================
# LOAD + PROCESS DATA
# ===============================
@@ -123,18 +109,17 @@ train_df, sign_to_idx = load_kaggle_asl_data(base_path)
rows = [row for _, row in train_df.iterrows()]
X, y = [], []
func = partial(process_row, base_path=base_path, max_frames=100)
with Pool(cpu_count()) as pool:
func = partial(process_row, base_path=base_path)
for feat, sign in pool.map(func, rows):
if feat is not None:
X.append(feat)
for feat_seq, sign in pool.map(func, rows):
if feat_seq is not None:
X.append(feat_seq)
y.append(sign)
X = np.array(X, dtype=np.float32)
X = np.stack(X) # (N, T, 63)
y = np.array(y)
print("Samples:", len(X))
print("Feature dim:", X.shape[1])
print("Sequence shape:", X.shape[1:])
# ===============================
# LABEL ENCODING
@@ -142,6 +127,7 @@ print("Feature dim:", X.shape[1])
le = LabelEncoder()
y = le.fit_transform(y)
num_classes = len(le.classes_)
print("Num classes:", num_classes)
# ===============================
# SPLIT
@@ -153,7 +139,7 @@ X_train, X_test, y_train, y_test = train_test_split(
# ===============================
# DATASET
# ===============================
class ASLDataset(Dataset):
class ASLSequenceDataset(Dataset):
def __init__(self, X, y):
self.X = torch.tensor(X, dtype=torch.float32)
self.y = torch.tensor(y, dtype=torch.long)
@@ -164,119 +150,93 @@ class ASLDataset(Dataset):
def __getitem__(self, idx):
return self.X[idx], self.y[idx]
train_loader = DataLoader(
ASLDataset(X_train, y_train),
batch_size=256,
shuffle=True,
pin_memory=True
)
test_loader = DataLoader(
ASLDataset(X_test, y_test),
batch_size=256,
shuffle=False,
pin_memory=True
)
train_loader = DataLoader(ASLSequenceDataset(X_train, y_train), batch_size=64, shuffle=True, pin_memory=True)
test_loader = DataLoader(ASLSequenceDataset(X_test, y_test), batch_size=64, shuffle=False, pin_memory=True)
# ===============================
# MODEL (FIXED)
# TRANSFORMER MODEL
# ===============================
class TransformerASL(nn.Module):
def __init__(self, input_dim, num_classes):
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=100):
super().__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0)/d_model))
pe[:, 0::2] = torch.sin(position*div_term)
pe[:, 1::2] = torch.cos(position*div_term)
self.register_buffer('pe', pe.unsqueeze(0))
self.proj = nn.Linear(input_dim, 256)
self.norm = nn.LayerNorm(256)
def forward(self, x):
return x + self.pe[:, :x.size(1), :]
encoder_layer = nn.TransformerEncoderLayer(
d_model=256,
nhead=8,
dim_feedforward=1024,
dropout=0.1,
activation="gelu",
batch_first=True,
norm_first=True
class TransformerASL(nn.Module):
def __init__(self, input_dim, num_classes, d_model=256, nhead=8, num_layers=4):
super().__init__()
self.proj = nn.Linear(input_dim, d_model)
self.norm = nn.LayerNorm(d_model)
self.pos = PositionalEncoding(d_model)
encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=1024,
dropout=0.1, activation='gelu', batch_first=True, norm_first=True)
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
self.fc = nn.Sequential(
nn.Linear(d_model, 512),
nn.BatchNorm1d(512),
nn.GELU(),
nn.Dropout(0.3),
nn.Linear(512, num_classes)
)
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=4)
self.fc1 = nn.Linear(256, 512)
self.bn1 = nn.BatchNorm1d(512)
self.drop1 = nn.Dropout(0.4)
self.fc2 = nn.Linear(512, 256)
self.bn2 = nn.BatchNorm1d(256)
self.drop2 = nn.Dropout(0.3)
self.out = nn.Linear(256, num_classes)
def forward(self, x):
x = self.proj(x)
x = self.norm(x)
x = self.pos(x)
x = self.encoder(x) # (B, T, d_model)
x = x.mean(dim=1) # temporal average
x = self.fc(x)
return x
x = x.unsqueeze(1) # (B, 1, 256)
x = self.encoder(x)
x = x.squeeze(1)
x = F.gelu(self.bn1(self.fc1(x)))
x = self.drop1(x)
x = F.gelu(self.bn2(self.fc2(x)))
x = self.drop2(x)
return self.out(x)
model = TransformerASL(X.shape[1], num_classes).to(device)
model = TransformerASL(input_dim=X.shape[2], num_classes=num_classes).to(device)
print("Parameters:", sum(p.numel() for p in model.parameters()))
# ===============================
# TRAINING SETUP
# TRAIN SETUP
# ===============================
criterion = nn.CrossEntropyLoss(label_smoothing=0.1)
optimizer = optim.AdamW(model.parameters(), lr=3e-4, weight_decay=1e-4)
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 10)
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10)
# ===============================
# TRAIN / EVAL
# TRAIN / EVAL FUNCTIONS
# ===============================
def train_epoch():
model.train()
total, correct, loss_sum = 0, 0, 0
for x, y in train_loader:
x, y = x.to(device), y.to(device)
optimizer.zero_grad(set_to_none=True)
logits = model(x)
loss = criterion(logits, y)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
loss_sum += loss.item()
correct += (logits.argmax(1) == y).sum().item()
total += y.size(0)
return loss_sum/len(train_loader), 100*correct/total
@torch.no_grad()
def evaluate():
model.eval()
total, correct = 0, 0
for x, y in test_loader:
x, y = x.to(device), y.to(device)
logits = model(x)
correct += (logits.argmax(1) == y).sum().item()
total += y.size(0)
return 100*correct/total
# ===============================
# TRAIN LOOP
# ===============================
@@ -289,22 +249,14 @@ for epoch in range(epochs):
loss, train_acc = train_epoch()
test_acc = evaluate()
scheduler.step()
print(f"Epoch {epoch+1}/{epochs} | "
f"Loss {loss:.4f} | "
f"Train {train_acc:.2f}% | "
f"Test {test_acc:.2f}%")
print(f"Epoch {epoch+1}/{epochs} | Loss {loss:.4f} | Train {train_acc:.2f}% | Test {test_acc:.2f}%")
if test_acc > best_acc:
best_acc = test_acc
wait = 0
torch.save({
"model": model.state_dict(),
"label_encoder": le
}, "asl_transformer_fixed.pth")
torch.save({"model": model.state_dict(), "label_encoder": le}, "asl_transformer_full.pth")
else:
wait += 1
if wait >= patience:
print("Early stopping")
break