AI, we don't believe that you can fly bro

This commit is contained in:
2026-01-11 15:16:54 -06:00
parent fa06e4d49e
commit ad33523ae2

View File

@@ -1,6 +1,3 @@
# ===============================
# IMPORTS
# ===============================
import os import os
import json import json
import math import math
@@ -20,7 +17,26 @@ from tqdm import tqdm
from collections import Counter from collections import Counter
# =============================== # ===============================
# DATA LOADING # GPU CONFIGURATION
# ===============================
print("=" * 60)
print("GPU CONFIGURATION")
print("=" * 60)
if torch.cuda.is_available():
print(f"✓ CUDA available!")
print(f"✓ GPU: {torch.cuda.get_device_name(0)}")
device = torch.device('cuda:0')
torch.backends.cudnn.benchmark = True
else:
print("✗ CUDA not available, using CPU")
device = torch.device('cpu')
print("=" * 60)
# ===============================
# DATA LOADING WITH NaN HANDLING
# =============================== # ===============================
def load_kaggle_asl_data(base_path): def load_kaggle_asl_data(base_path):
train_df = pd.read_csv(os.path.join(base_path, "train.csv")) train_df = pd.read_csv(os.path.join(base_path, "train.csv"))
@@ -30,39 +46,70 @@ def load_kaggle_asl_data(base_path):
def extract_hand_landmarks_from_parquet(path): def extract_hand_landmarks_from_parquet(path):
"""Extract hand landmarks, handling NaN values properly"""
try: try:
df = pd.read_parquet(path) df = pd.read_parquet(path)
# Get hand data
left = df[df["type"] == "left_hand"] left = df[df["type"] == "left_hand"]
right = df[df["type"] == "right_hand"] right = df[df["type"] == "right_hand"]
hand = left if len(left) >= len(right) else right # Choose hand with more non-NaN data
left_valid = left[['x', 'y', 'z']].notna().all(axis=1).sum()
right_valid = right[['x', 'y', 'z']].notna().all(axis=1).sum()
if left_valid == 0 and right_valid == 0:
return None # No valid hand data
hand = left if left_valid >= right_valid else right
if len(hand) == 0: if len(hand) == 0:
return None return None
# Get frames with valid data
frames = sorted(hand['frame'].unique()) frames = sorted(hand['frame'].unique())
landmarks_seq = [] landmarks_seq = []
for frame in frames: for frame in frames:
lm_frame = hand[hand['frame'] == frame] lm_frame = hand[hand['frame'] == frame]
# Check if this frame has valid data
valid_rows = lm_frame[['x', 'y', 'z']].notna().all(axis=1)
if valid_rows.sum() < 10: # Need at least 10 valid landmarks
continue
lm_list = [] lm_list = []
frame_has_data = False
for i in range(21): for i in range(21):
lm = lm_frame[lm_frame['landmark_index'] == i] lm = lm_frame[lm_frame['landmark_index'] == i]
if len(lm) == 0: if len(lm) == 0:
lm_list.append([0.0, 0.0, 0.0]) lm_list.append([0.0, 0.0, 0.0])
else: else:
lm_list.append([ x = lm['x'].iloc[0]
float(lm['x'].iloc[0]), y = lm['y'].iloc[0]
float(lm['y'].iloc[0]), z = lm['z'].iloc[0]
float(lm['z'].iloc[0])
]) # Check for NaN
if pd.isna(x) or pd.isna(y) or pd.isna(z):
lm_list.append([0.0, 0.0, 0.0])
else:
lm_list.append([float(x), float(y), float(z)])
frame_has_data = True
if frame_has_data:
landmarks_seq.append(lm_list) landmarks_seq.append(lm_list)
if len(landmarks_seq) == 0:
return None
return np.array(landmarks_seq, dtype=np.float32) return np.array(landmarks_seq, dtype=np.float32)
except: except Exception as e:
return None return None
def get_features_sequence(landmarks_seq, max_frames=100): def get_features_sequence(landmarks_seq, max_frames=100):
"""Extract features from landmark sequence"""
if landmarks_seq is None or len(landmarks_seq) == 0: if landmarks_seq is None or len(landmarks_seq) == 0:
return None, None return None, None
@@ -74,23 +121,27 @@ def get_features_sequence(landmarks_seq, max_frames=100):
scale = np.maximum(scale, 1e-6) scale = np.maximum(scale, 1e-6)
landmarks_seq = landmarks_seq / scale[:, np.newaxis, :] landmarks_seq = landmarks_seq / scale[:, np.newaxis, :]
# Replace any remaining NaN/Inf with 0
landmarks_seq = np.nan_to_num(landmarks_seq, nan=0.0, posinf=0.0, neginf=0.0)
# Finger curl distances # Finger curl distances
tips = [4, 8, 12, 16, 20] tips = [4, 8, 12, 16, 20]
bases = [1, 5, 9, 13, 17] bases = [1, 5, 9, 13, 17]
curl_features = [] curl_features = []
for b, t in zip(bases, tips): for b, t in zip(bases, tips):
curl_features.append(np.linalg.norm(landmarks_seq[:, t] - landmarks_seq[:, b], axis=1)) curl = np.linalg.norm(landmarks_seq[:, t] - landmarks_seq[:, b], axis=1)
curl_features = np.stack(curl_features, axis=1) # (T,5) curl_features.append(curl)
curl_features = np.stack(curl_features, axis=1)
# Temporal deltas # Temporal deltas
deltas = np.zeros_like(landmarks_seq) deltas = np.zeros_like(landmarks_seq)
deltas[1:] = landmarks_seq[1:] - landmarks_seq[:-1] deltas[1:] = landmarks_seq[1:] - landmarks_seq[:-1]
# Flatten features along last axis # Flatten features
seq = np.concatenate([landmarks_seq, deltas, curl_features[:, :, np.newaxis]], axis=2) seq = np.concatenate([landmarks_seq, deltas, curl_features[:, :, np.newaxis]], axis=2)
seq = seq.reshape(seq.shape[0], -1) # (T, feature_dim) seq = seq.reshape(seq.shape[0], -1)
# Pad or truncate to max_frames # Pad or truncate
T, F = seq.shape T, F = seq.shape
if T < max_frames: if T < max_frames:
pad = np.zeros((max_frames - T, F), dtype=np.float32) pad = np.zeros((max_frames - T, F), dtype=np.float32)
@@ -98,7 +149,7 @@ def get_features_sequence(landmarks_seq, max_frames=100):
elif T > max_frames: elif T > max_frames:
seq = seq[:max_frames, :] seq = seq[:max_frames, :]
# Mask # Create mask
valid_mask = np.zeros(max_frames, dtype=bool) valid_mask = np.zeros(max_frames, dtype=bool)
valid_mask[:min(T, max_frames)] = True valid_mask[:min(T, max_frames)] = True
@@ -106,20 +157,29 @@ def get_features_sequence(landmarks_seq, max_frames=100):
def process_row(row, base_path, max_frames=100): def process_row(row, base_path, max_frames=100):
"""Process a single row"""
path = os.path.join(base_path, row["path"]) path = os.path.join(base_path, row["path"])
if not os.path.exists(path): if not os.path.exists(path):
return None, None, None return None, None, None
try: try:
lm = extract_hand_landmarks_from_parquet(path) lm = extract_hand_landmarks_from_parquet(path)
if lm is None: if lm is None:
return None, None, None return None, None, None
feat, mask = get_features_sequence(lm, max_frames) feat, mask = get_features_sequence(lm, max_frames)
if feat is None: if feat is None:
return None, None, None return None, None, None
# Final NaN check
if np.isnan(feat).any() or np.isinf(feat).any():
return None, None, None
return feat, mask, row["sign"] return feat, mask, row["sign"]
except: except:
return None, None, None return None, None, None
# =============================== # ===============================
# TRANSFORMER MODEL # TRANSFORMER MODEL
# =============================== # ===============================
@@ -138,7 +198,7 @@ class PositionalEncoding(nn.Module):
class TransformerASL(nn.Module): class TransformerASL(nn.Module):
def __init__(self, input_dim=63, num_classes=250, d_model=192, nhead=6, num_layers=4): def __init__(self, input_dim=68, num_classes=250, d_model=256, nhead=8, num_layers=4):
super().__init__() super().__init__()
self.proj = nn.Linear(input_dim, d_model) self.proj = nn.Linear(input_dim, d_model)
self.norm_in = nn.LayerNorm(d_model) self.norm_in = nn.LayerNorm(d_model)
@@ -170,37 +230,33 @@ class TransformerASL(nn.Module):
return self.head(x) return self.head(x)
def create_padding_mask(lengths, max_len):
return torch.arange(max_len, device=lengths.device)[None, :] >= lengths[:, None]
# =============================== # ===============================
# MAIN TRAINING # MAIN TRAINING
# =============================== # ===============================
def main(): def main():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") base_path = "asl_kaggle"
print(f"Using device: {device}")
if device.type == "cuda":
print("GPU:", torch.cuda.get_device_name(0))
base_path = "asl_kaggle" # ← set your dataset path
max_frames = 100 max_frames = 100
MIN_SAMPLES_PER_CLASS = 6 MIN_SAMPLES_PER_CLASS = 6
print("Loading metadata...") print("\nLoading metadata...")
train_df, sign_to_idx = load_kaggle_asl_data(base_path) train_df, sign_to_idx = load_kaggle_asl_data(base_path)
print(f"Total sequences: {len(train_df)}")
rows = [row for _, row in train_df.iterrows()] rows = [row for _, row in train_df.iterrows()]
print("Processing landmark sequences...") print("\nProcessing sequences with NaN handling...")
with Pool(cpu_count()) as pool: with Pool(cpu_count()) as pool:
results = list(tqdm( results = list(tqdm(
pool.imap( pool.imap(
partial(process_row, base_path=base_path, max_frames=max_frames), partial(process_row, base_path=base_path, max_frames=max_frames),
rows rows,
chunksize=100
), ),
total=len(rows), total=len(rows),
desc="Extracting landmarks" desc="Extracting landmarks"
)) ))
# Filter valid results
X_list, masks_list, y_list = [], [], [] X_list, masks_list, y_list = [], [], []
for feat, mask, sign in results: for feat, mask, sign in results:
if feat is not None and feat.shape[0] == max_frames: if feat is not None and feat.shape[0] == max_frames:
@@ -208,13 +264,19 @@ def main():
masks_list.append(mask) masks_list.append(mask)
y_list.append(sign) y_list.append(sign)
print(f"\n✓ Valid sequences: {len(X_list)} out of {len(train_df)}")
if not X_list: if not X_list:
print("No valid sequences found. Check parquet files / paths.") print("No valid sequences found!")
print("\nPossible issues:")
print(" 1. Most files contain only NaN hand landmarks")
print(" 2. Hand detection failed in most videos")
print(" 3. Dataset might be corrupted")
return return
X = np.stack(X_list) X = np.stack(X_list)
masks = np.stack(masks_list) masks = np.stack(masks_list)
print(f"Loaded {len(X)} sequences | shape: {X.shape}") print(f"Data shape: {X.shape}")
# Global normalization # Global normalization
X = np.clip(X, -5.0, 5.0) X = np.clip(X, -5.0, 5.0)
@@ -222,9 +284,11 @@ def main():
std = X.std(axis=(0, 1), keepdims=True) + 1e-8 std = X.std(axis=(0, 1), keepdims=True) + 1e-8
X = (X - mean) / std X = (X - mean) / std
# Encode labels
le = LabelEncoder() le = LabelEncoder()
y = le.fit_transform(y_list) y = le.fit_transform(y_list)
# Filter classes with too few samples
counts = Counter(y) counts = Counter(y)
valid_classes = [cls for cls, cnt in counts.items() if cnt >= MIN_SAMPLES_PER_CLASS] valid_classes = [cls for cls, cnt in counts.items() if cnt >= MIN_SAMPLES_PER_CLASS]
mask_valid = np.isin(y, valid_classes) mask_valid = np.isin(y, valid_classes)
@@ -232,9 +296,11 @@ def main():
masks = masks[mask_valid] masks = masks[mask_valid]
y = y[mask_valid] y = y[mask_valid]
# Re-encode
le = LabelEncoder() le = LabelEncoder()
y = le.fit_transform(y) y = le.fit_transform(y)
print(f"{len(X)} samples | {len(le.classes_)} classes after filtering")
print(f"Final dataset: {len(X)} samples | {len(le.classes_)} classes")
# Train-test split # Train-test split
X_train, X_test, masks_train, masks_test, y_train, y_test = train_test_split( X_train, X_test, masks_train, masks_test, y_train, y_test = train_test_split(
@@ -254,23 +320,28 @@ def main():
def __getitem__(self, idx): def __getitem__(self, idx):
return self.X[idx], self.masks[idx], self.y[idx] return self.X[idx], self.masks[idx], self.y[idx]
batch_size = 128 if device.type == 'cuda' else 64
train_loader = DataLoader( train_loader = DataLoader(
ASLSequenceDataset(X_train, masks_train, y_train), ASLSequenceDataset(X_train, masks_train, y_train),
batch_size=64, shuffle=True, num_workers=4, pin_memory=True batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True
) )
test_loader = DataLoader( test_loader = DataLoader(
ASLSequenceDataset(X_test, masks_test, y_test), ASLSequenceDataset(X_test, masks_test, y_test),
batch_size=96, shuffle=False, num_workers=4, pin_memory=True batch_size=batch_size * 2, shuffle=False, num_workers=4, pin_memory=True
) )
# Model
model = TransformerASL( model = TransformerASL(
input_dim=X.shape[2], input_dim=X.shape[2],
num_classes=len(le.classes_), num_classes=len(le.classes_),
d_model=192, d_model=256,
nhead=6, nhead=8,
num_layers=4 num_layers=4
).to(device) ).to(device)
print(f"Model parameters: {sum(p.numel() for p in model.parameters()):,}")
total_params = sum(p.numel() for p in model.parameters())
print(f"\nModel parameters: {total_params:,}")
criterion = nn.CrossEntropyLoss(label_smoothing=0.05) criterion = nn.CrossEntropyLoss(label_smoothing=0.05)
optimizer = optim.AdamW(model.parameters(), lr=5e-4, weight_decay=1e-4) optimizer = optim.AdamW(model.parameters(), lr=5e-4, weight_decay=1e-4)
@@ -282,22 +353,29 @@ def main():
wait = 0 wait = 0
epochs = 70 epochs = 70
print("\nStarting training...")
print("=" * 60)
for epoch in range(epochs): for epoch in range(epochs):
model.train() model.train()
total_loss = 0 total_loss = 0
correct = total = 0 correct = total = 0
for x, mask, yb in tqdm(train_loader, desc="Train"):
for x, mask, yb in tqdm(train_loader, desc=f"Epoch {epoch + 1}/{epochs}"):
x, mask, yb = x.to(device), mask.to(device), yb.to(device) x, mask, yb = x.to(device), mask.to(device), yb.to(device)
key_mask = ~mask # True where padding key_mask = ~mask
optimizer.zero_grad(set_to_none=True) optimizer.zero_grad(set_to_none=True)
logits = model(x, key_padding_mask=key_mask) logits = model(x, key_padding_mask=key_mask)
loss = criterion(logits, yb) loss = criterion(logits, yb)
loss.backward() loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=0.8) torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=0.8)
optimizer.step() optimizer.step()
total_loss += loss.item() total_loss += loss.item()
correct += (logits.argmax(-1) == yb).sum().item() correct += (logits.argmax(-1) == yb).sum().item()
total += yb.size(0) total += yb.size(0)
train_acc = correct / total * 100 train_acc = correct / total * 100
# Eval # Eval
@@ -310,12 +388,14 @@ def main():
logits = model(x, key_padding_mask=key_mask) logits = model(x, key_padding_mask=key_mask)
correct += (logits.argmax(-1) == yb).sum().item() correct += (logits.argmax(-1) == yb).sum().item()
total += yb.size(0) total += yb.size(0)
test_acc = correct / total * 100 test_acc = correct / total * 100
print(f"[{epoch+1:2d}/{epochs}] Loss: {total_loss/len(train_loader):.4f} | " print(f"[{epoch + 1:2d}/{epochs}] Loss: {total_loss / len(train_loader):.4f} | "
f"Train: {train_acc:.2f}% | Test: {test_acc:.2f}%") f"Train: {train_acc:.2f}% | Test: {test_acc:.2f}%")
scheduler.step() scheduler.step()
if test_acc > best_acc: if test_acc > best_acc:
best_acc = test_acc best_acc = test_acc
wait = 0 wait = 0
@@ -324,16 +404,22 @@ def main():
'optimizer': optimizer.state_dict(), 'optimizer': optimizer.state_dict(),
'label_encoder_classes': le.classes_, 'label_encoder_classes': le.classes_,
'acc': best_acc, 'acc': best_acc,
'epoch': epoch 'epoch': epoch,
'input_dim': X.shape[2],
'num_classes': len(le.classes_)
}, "best_asl_transformer.pth") }, "best_asl_transformer.pth")
print(" → New best saved") print(f" → New best: {best_acc:.2f}%")
else: else:
wait += 1 wait += 1
if wait >= patience: if wait >= patience:
print("Early stopping") print("Early stopping")
break break
print(f"\nBest test accuracy: {best_acc:.2f}%") print("=" * 60)
print(f"\n✓ Training complete!")
print(f"✓ Best test accuracy: {best_acc:.2f}%")
print(f"✓ Model saved: best_asl_transformer.pth")
if __name__ == "__main__": if __name__ == "__main__":
main() main()