chatgpt lock tf in
This commit is contained in:
248
training.py
248
training.py
@@ -10,34 +10,31 @@ import torch.optim as optim
|
|||||||
|
|
||||||
from torch.utils.data import Dataset, DataLoader
|
from torch.utils.data import Dataset, DataLoader
|
||||||
from sklearn.model_selection import train_test_split
|
from sklearn.model_selection import train_test_split
|
||||||
from sklearn.preprocessing import LabelEncoder, StandardScaler
|
from sklearn.preprocessing import LabelEncoder
|
||||||
from multiprocessing import Pool, cpu_count
|
from multiprocessing import Pool, cpu_count
|
||||||
from functools import partial
|
from functools import partial
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from collections import Counter
|
from collections import Counter
|
||||||
|
|
||||||
|
# ===============================
|
||||||
|
# DATA LOADING
|
||||||
|
# ===============================
|
||||||
def load_kaggle_asl_data(base_path):
|
def load_kaggle_asl_data(base_path):
|
||||||
train_df = pd.read_csv(os.path.join(base_path, "train.csv"))
|
train_df = pd.read_csv(os.path.join(base_path, "train.csv"))
|
||||||
with open(os.path.join(base_path, "sign_to_prediction_index_map.json")) as f:
|
with open(os.path.join(base_path, "sign_to_prediction_index_map.json")) as f:
|
||||||
sign_to_idx = json.load(f)
|
sign_to_idx = json.load(f)
|
||||||
return train_df, sign_to_idx
|
return train_df, sign_to_idx
|
||||||
|
|
||||||
|
|
||||||
def extract_hand_landmarks_from_parquet(path):
|
def extract_hand_landmarks_from_parquet(path):
|
||||||
try:
|
try:
|
||||||
df = pd.read_parquet(path)
|
df = pd.read_parquet(path)
|
||||||
left = df[df["type"] == "left_hand"]
|
left = df[df["type"] == "left_hand"]
|
||||||
right = df[df["type"] == "right_hand"]
|
right = df[df["type"] == "right_hand"]
|
||||||
|
|
||||||
hand = left if len(left) >= len(right) else right
|
hand = left if len(left) >= len(right) else right
|
||||||
|
|
||||||
if len(hand) == 0:
|
if len(hand) == 0:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
frames = sorted(hand['frame'].unique())
|
frames = sorted(hand['frame'].unique())
|
||||||
landmarks_seq = []
|
landmarks_seq = []
|
||||||
|
|
||||||
for frame in frames:
|
for frame in frames:
|
||||||
lm_frame = hand[hand['frame'] == frame]
|
lm_frame = hand[hand['frame'] == frame]
|
||||||
lm_list = []
|
lm_list = []
|
||||||
@@ -52,12 +49,10 @@ def extract_hand_landmarks_from_parquet(path):
|
|||||||
float(lm['z'].iloc[0])
|
float(lm['z'].iloc[0])
|
||||||
])
|
])
|
||||||
landmarks_seq.append(lm_list)
|
landmarks_seq.append(lm_list)
|
||||||
|
|
||||||
return np.array(landmarks_seq, dtype=np.float32)
|
return np.array(landmarks_seq, dtype=np.float32)
|
||||||
except:
|
except:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
def get_features_sequence(landmarks_seq, max_frames=100):
|
def get_features_sequence(landmarks_seq, max_frames=100):
|
||||||
if landmarks_seq is None or len(landmarks_seq) == 0:
|
if landmarks_seq is None or len(landmarks_seq) == 0:
|
||||||
return None
|
return None
|
||||||
@@ -65,45 +60,51 @@ def get_features_sequence(landmarks_seq, max_frames=100):
|
|||||||
# Center on wrist
|
# Center on wrist
|
||||||
landmarks_seq -= landmarks_seq[:, 0:1, :]
|
landmarks_seq -= landmarks_seq[:, 0:1, :]
|
||||||
|
|
||||||
# Scale using index → middle finger tip distance (more stable than single point)
|
# Robust scale: wrist → middle finger MCP
|
||||||
scale = np.linalg.norm(landmarks_seq[:, 8] - landmarks_seq[:, 12], axis=1, keepdims=True)
|
scale = np.linalg.norm(landmarks_seq[:,0] - landmarks_seq[:,9], axis=1, keepdims=True)
|
||||||
scale = np.maximum(scale, 1e-6)
|
scale = np.maximum(scale, 1e-6)
|
||||||
landmarks_seq /= scale
|
landmarks_seq /= scale[:, np.newaxis, :]
|
||||||
|
|
||||||
# Flatten
|
# Flatten
|
||||||
seq = landmarks_seq.reshape(landmarks_seq.shape[0], -1)
|
seq = landmarks_seq.reshape(landmarks_seq.shape[0], -1)
|
||||||
|
|
||||||
# Pad / truncate
|
# Pad / truncate
|
||||||
if len(seq) < max_frames:
|
T = seq.shape[0]
|
||||||
pad = np.zeros((max_frames - len(seq), seq.shape[1]), dtype=np.float32)
|
if T < max_frames:
|
||||||
|
pad = np.zeros((max_frames - T, seq.shape[1]), dtype=np.float32)
|
||||||
seq = np.concatenate([seq, pad])
|
seq = np.concatenate([seq, pad])
|
||||||
else:
|
else:
|
||||||
seq = seq[:max_frames]
|
seq = seq[:max_frames]
|
||||||
|
|
||||||
return seq
|
# Mask for valid frames
|
||||||
|
valid_mask = np.zeros(max_frames, dtype=bool)
|
||||||
|
valid_mask[:min(T, max_frames)] = True
|
||||||
|
|
||||||
|
return seq, valid_mask
|
||||||
|
|
||||||
def process_row(row, base_path, max_frames=100):
|
def process_row(row, base_path, max_frames=100):
|
||||||
path = os.path.join(base_path, row["path"])
|
path = os.path.join(base_path, row["path"])
|
||||||
if not os.path.exists(path):
|
if not os.path.exists(path):
|
||||||
return None, None
|
return None, None, None
|
||||||
try:
|
try:
|
||||||
lm = extract_hand_landmarks_from_parquet(path)
|
lm = extract_hand_landmarks_from_parquet(path)
|
||||||
if lm is None:
|
if lm is None:
|
||||||
return None, None
|
return None, None, None
|
||||||
feat = get_features_sequence(lm, max_frames)
|
feat, mask = get_features_sequence(lm, max_frames)
|
||||||
if feat is None:
|
if feat is None:
|
||||||
return None, None
|
return None, None, None
|
||||||
return feat, row["sign"]
|
return feat, mask, row["sign"]
|
||||||
except:
|
except:
|
||||||
return None, None
|
return None, None, None
|
||||||
|
|
||||||
|
|
||||||
|
# ===============================
|
||||||
|
# TRANSFORMER MODEL
|
||||||
|
# ===============================
|
||||||
class PositionalEncoding(nn.Module):
|
class PositionalEncoding(nn.Module):
|
||||||
def __init__(self, d_model, max_len=128):
|
def __init__(self, d_model, max_len=128):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
pe = torch.zeros(max_len, d_model)
|
pe = torch.zeros(max_len, d_model)
|
||||||
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
position = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1)
|
||||||
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
||||||
pe[:, 0::2] = torch.sin(position * div_term)
|
pe[:, 0::2] = torch.sin(position * div_term)
|
||||||
pe[:, 1::2] = torch.cos(position * div_term)
|
pe[:, 1::2] = torch.cos(position * div_term)
|
||||||
@@ -112,28 +113,25 @@ class PositionalEncoding(nn.Module):
|
|||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
return x + self.pe[:, :x.size(1)]
|
return x + self.pe[:, :x.size(1)]
|
||||||
|
|
||||||
|
|
||||||
class TransformerASL(nn.Module):
|
class TransformerASL(nn.Module):
|
||||||
def __init__(self, input_dim=63, num_classes=250, d_model=192, nhead=6, num_layers=4):
|
def __init__(self, input_dim=63, num_classes=250, d_model=128, nhead=4, num_layers=2):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.proj = nn.Linear(input_dim, d_model)
|
self.proj = nn.Linear(input_dim, d_model)
|
||||||
self.norm_in = nn.LayerNorm(d_model)
|
self.norm_in = nn.LayerNorm(d_model)
|
||||||
self.pos = PositionalEncoding(d_model)
|
self.pos = PositionalEncoding(d_model)
|
||||||
|
|
||||||
enc_layer = nn.TransformerEncoderLayer(
|
enc_layer = nn.TransformerEncoderLayer(
|
||||||
d_model=d_model,
|
d_model=d_model,
|
||||||
nhead=nhead,
|
nhead=nhead,
|
||||||
dim_feedforward=d_model * 4,
|
dim_feedforward=d_model*4,
|
||||||
dropout=0.15,
|
dropout=0.1,
|
||||||
activation='gelu',
|
activation='gelu',
|
||||||
batch_first=True,
|
batch_first=True,
|
||||||
norm_first=True
|
norm_first=True
|
||||||
)
|
)
|
||||||
self.encoder = nn.TransformerEncoder(enc_layer, num_layers=num_layers)
|
self.encoder = nn.TransformerEncoder(enc_layer, num_layers=num_layers)
|
||||||
|
|
||||||
self.head = nn.Sequential(
|
self.head = nn.Sequential(
|
||||||
nn.LayerNorm(d_model),
|
nn.LayerNorm(d_model),
|
||||||
nn.Dropout(0.25),
|
nn.Dropout(0.2),
|
||||||
nn.Linear(d_model, num_classes)
|
nn.Linear(d_model, num_classes)
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -142,209 +140,144 @@ class TransformerASL(nn.Module):
|
|||||||
x = self.norm_in(x)
|
x = self.norm_in(x)
|
||||||
x = self.pos(x)
|
x = self.pos(x)
|
||||||
x = self.encoder(x, src_key_padding_mask=key_padding_mask)
|
x = self.encoder(x, src_key_padding_mask=key_padding_mask)
|
||||||
x = x.mean(dim=1) # global average pooling
|
x = x.mean(dim=1)
|
||||||
return self.head(x)
|
return self.head(x)
|
||||||
|
|
||||||
|
def create_padding_mask(valid_masks):
|
||||||
|
# valid_masks: (B,T) bool, True for valid
|
||||||
|
return ~valid_masks # True in mask = positions to ignore
|
||||||
|
|
||||||
def create_padding_mask(lengths, max_len):
|
# ===============================
|
||||||
return torch.arange(max_len, device=lengths.device)[None, :] >= lengths[:, None]
|
# MAIN
|
||||||
|
# ===============================
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
# ===============================
|
|
||||||
# DEVICE
|
|
||||||
# ===============================
|
|
||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
print(f"Using device: {device}")
|
print(f"Using device: {device}")
|
||||||
if device.type == "cuda":
|
if device.type == "cuda":
|
||||||
print("GPU:", torch.cuda.get_device_name(0))
|
print("GPU:", torch.cuda.get_device_name(0))
|
||||||
|
|
||||||
# ===============================
|
base_path = "asl_kaggle"
|
||||||
# CONFIG
|
|
||||||
# ===============================
|
|
||||||
base_path = "asl_kaggle" # ← CHANGE THIS TO YOUR ACTUAL PATH
|
|
||||||
max_frames = 100
|
max_frames = 100
|
||||||
MIN_SAMPLES_PER_CLASS = 6 # ← important! prevents stratified split crash
|
MIN_SAMPLES_PER_CLASS = 6
|
||||||
|
|
||||||
# ===============================
|
# --- LOAD DATA ---
|
||||||
# DATA LOADING & PROCESSING
|
|
||||||
# ===============================
|
|
||||||
print("Loading metadata...")
|
|
||||||
train_df, sign_to_idx = load_kaggle_asl_data(base_path)
|
train_df, sign_to_idx = load_kaggle_asl_data(base_path)
|
||||||
|
|
||||||
print(f"Processing {len(train_df)} videos...")
|
|
||||||
rows = [row for _, row in train_df.iterrows()]
|
rows = [row for _, row in train_df.iterrows()]
|
||||||
|
|
||||||
with Pool(cpu_count()) as pool:
|
with Pool(cpu_count()) as pool:
|
||||||
results = list(tqdm(
|
results = list(tqdm(
|
||||||
pool.imap(
|
pool.imap(partial(process_row, base_path=base_path, max_frames=max_frames), rows),
|
||||||
partial(process_row, base_path=base_path, max_frames=max_frames),
|
|
||||||
rows
|
|
||||||
),
|
|
||||||
total=len(rows),
|
total=len(rows),
|
||||||
desc="Extracting landmarks"
|
desc="Processing"
|
||||||
))
|
))
|
||||||
|
|
||||||
X_list, y_list = [], []
|
X_list, mask_list, y_list = [], [], []
|
||||||
for feat, sign in results:
|
for feat, mask, sign in results:
|
||||||
if feat is not None:
|
if feat is not None:
|
||||||
X_list.append(feat)
|
X_list.append(feat)
|
||||||
|
mask_list.append(mask)
|
||||||
y_list.append(sign)
|
y_list.append(sign)
|
||||||
|
|
||||||
if not X_list:
|
if not X_list:
|
||||||
print("No valid sequences found. Check parquet files / paths.")
|
print("No valid sequences found.")
|
||||||
return
|
return
|
||||||
|
|
||||||
X = np.stack(X_list)
|
X = np.stack(X_list)
|
||||||
print(f"Loaded {len(X)} valid sequences | shape: {X.shape}")
|
masks = np.stack(mask_list)
|
||||||
|
print(f"Loaded {len(X)} sequences | shape: {X.shape}")
|
||||||
|
|
||||||
# Global normalization (very important for stability)
|
# --- NORMALIZE only valid frames ---
|
||||||
print("Before global norm → mean:", X.mean(), "std:", X.std())
|
for i in range(X.shape[0]):
|
||||||
X = np.clip(X, -5.0, 5.0)
|
valid_idx = masks[i]
|
||||||
mean = X.mean(axis=(0, 1), keepdims=True)
|
X[i, valid_idx] = (X[i, valid_idx] - X[i, valid_idx].mean(0)) / (X[i, valid_idx].std(0) + 1e-8)
|
||||||
std = X.std(axis=(0, 1), keepdims=True) + 1e-8
|
|
||||||
X = (X - mean) / std
|
|
||||||
print("After global norm → mean:", X.mean(), "std:", X.std())
|
|
||||||
|
|
||||||
# ===============================
|
# --- LABELS ---
|
||||||
# LABELS
|
|
||||||
# ===============================
|
|
||||||
le = LabelEncoder()
|
le = LabelEncoder()
|
||||||
y = le.fit_transform(y_list)
|
y = le.fit_transform(y_list)
|
||||||
|
|
||||||
# Remove classes with too few samples (prevents stratify error)
|
# Remove rare classes
|
||||||
counts = Counter(y)
|
counts = Counter(y)
|
||||||
valid_classes = [cls for cls, cnt in counts.items() if cnt >= MIN_SAMPLES_PER_CLASS]
|
valid_classes = [cls for cls, cnt in counts.items() if cnt >= MIN_SAMPLES_PER_CLASS]
|
||||||
|
mask_keep = np.isin(y, valid_classes)
|
||||||
mask = np.isin(y, valid_classes)
|
X, masks, y = X[mask_keep], masks[mask_keep], y[mask_keep]
|
||||||
X = X[mask]
|
|
||||||
y = y[mask]
|
|
||||||
|
|
||||||
# Re-encode labels consecutively (0,1,2,... no gaps)
|
|
||||||
le = LabelEncoder()
|
le = LabelEncoder()
|
||||||
y = le.fit_transform(y)
|
y = le.fit_transform(y)
|
||||||
|
print(f"{len(X)} samples remain | {len(le.classes_)} classes")
|
||||||
|
|
||||||
print(f"After filtering: {len(X)} samples remain | {len(le.classes_)} classes")
|
# --- SPLIT ---
|
||||||
|
X_train, X_test, masks_train, masks_test, y_train, y_test = train_test_split(
|
||||||
# ===============================
|
X, masks, y, test_size=0.15, stratify=y, random_state=42
|
||||||
# SPLIT
|
|
||||||
# ===============================
|
|
||||||
X_train, X_test, y_train, y_test = train_test_split(
|
|
||||||
X, y,
|
|
||||||
test_size=0.15,
|
|
||||||
stratify=y, # should be safe now
|
|
||||||
random_state=42
|
|
||||||
)
|
)
|
||||||
|
|
||||||
# ===============================
|
# --- DATASETS ---
|
||||||
# DATASET & LOADERS
|
|
||||||
# ===============================
|
|
||||||
class ASLSequenceDataset(Dataset):
|
class ASLSequenceDataset(Dataset):
|
||||||
def __init__(self, X, y):
|
def __init__(self, X, masks, y):
|
||||||
self.X = torch.from_numpy(X).float()
|
self.X = torch.from_numpy(X).float()
|
||||||
|
self.masks = torch.from_numpy(masks)
|
||||||
self.y = torch.from_numpy(y).long()
|
self.y = torch.from_numpy(y).long()
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return len(self.X)
|
return len(self.X)
|
||||||
|
|
||||||
def __getitem__(self, idx):
|
def __getitem__(self, idx):
|
||||||
return self.X[idx], self.y[idx]
|
return self.X[idx], self.masks[idx], self.y[idx]
|
||||||
|
|
||||||
train_loader = DataLoader(
|
train_loader = DataLoader(ASLSequenceDataset(X_train, masks_train, y_train),
|
||||||
ASLSequenceDataset(X_train, y_train),
|
batch_size=64, shuffle=True, num_workers=4, pin_memory=True)
|
||||||
batch_size=64,
|
test_loader = DataLoader(ASLSequenceDataset(X_test, masks_test, y_test),
|
||||||
shuffle=True,
|
batch_size=96, shuffle=False, num_workers=4, pin_memory=True)
|
||||||
num_workers=4,
|
|
||||||
pin_memory=True
|
|
||||||
)
|
|
||||||
|
|
||||||
test_loader = DataLoader(
|
# --- MODEL ---
|
||||||
ASLSequenceDataset(X_test, y_test),
|
model = TransformerASL(input_dim=X.shape[2], num_classes=len(le.classes_)).to(device)
|
||||||
batch_size=96,
|
print(f"Model params: {sum(p.numel() for p in model.parameters()):,}")
|
||||||
shuffle=False,
|
|
||||||
num_workers=4,
|
|
||||||
pin_memory=True
|
|
||||||
)
|
|
||||||
|
|
||||||
# ===============================
|
|
||||||
# MODEL
|
|
||||||
# ===============================
|
|
||||||
model = TransformerASL(
|
|
||||||
input_dim=63,
|
|
||||||
num_classes=len(le.classes_),
|
|
||||||
d_model=192,
|
|
||||||
nhead=6,
|
|
||||||
num_layers=4
|
|
||||||
).to(device)
|
|
||||||
|
|
||||||
print(f"Model parameters: {sum(p.numel() for p in model.parameters()):,}")
|
|
||||||
|
|
||||||
# ===============================
|
|
||||||
# TRAINING SETUP
|
|
||||||
# ===============================
|
|
||||||
criterion = nn.CrossEntropyLoss(label_smoothing=0.05)
|
criterion = nn.CrossEntropyLoss(label_smoothing=0.05)
|
||||||
optimizer = optim.AdamW(model.parameters(), lr=5e-4, weight_decay=1e-4)
|
optimizer = optim.AdamW(model.parameters(), lr=1e-4, weight_decay=1e-4)
|
||||||
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10)
|
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10)
|
||||||
|
|
||||||
# ===============================
|
# --- TRAINING ---
|
||||||
# TRAIN / EVAL
|
best_acc = 0.0
|
||||||
# ===============================
|
patience = 15
|
||||||
|
wait = 0
|
||||||
|
epochs = 70
|
||||||
|
|
||||||
def train_epoch():
|
def train_epoch():
|
||||||
model.train()
|
model.train()
|
||||||
total_loss = 0
|
total_loss = 0
|
||||||
correct = total = 0
|
correct = total = 0
|
||||||
|
for x, m, yb in tqdm(train_loader, desc="Train"):
|
||||||
for x, y in tqdm(train_loader, desc="Train"):
|
x, m, yb = x.to(device), m.to(device), yb.to(device)
|
||||||
x, y = x.to(device), y.to(device)
|
mask = create_padding_mask(m)
|
||||||
lengths = (x.abs().sum(dim=2) > 1e-5).sum(dim=1)
|
|
||||||
mask = create_padding_mask(lengths, x.size(1))
|
|
||||||
|
|
||||||
optimizer.zero_grad(set_to_none=True)
|
optimizer.zero_grad(set_to_none=True)
|
||||||
logits = model(x, key_padding_mask=mask)
|
logits = model(x, key_padding_mask=mask)
|
||||||
|
loss = criterion(logits, yb)
|
||||||
loss = criterion(logits, y)
|
|
||||||
loss.backward()
|
loss.backward()
|
||||||
|
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=0.8)
|
||||||
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=0.8)
|
|
||||||
|
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
|
|
||||||
total_loss += loss.item()
|
total_loss += loss.item()
|
||||||
correct += (logits.argmax(-1) == y).sum().item()
|
correct += (logits.argmax(-1) == yb).sum().item()
|
||||||
total += y.size(0)
|
total += yb.size(0)
|
||||||
|
|
||||||
return total_loss / len(train_loader), correct / total * 100
|
return total_loss / len(train_loader), correct / total * 100
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def evaluate():
|
def evaluate():
|
||||||
model.eval()
|
model.eval()
|
||||||
correct = total = 0
|
correct = total = 0
|
||||||
for x, y in test_loader:
|
for x, m, yb in test_loader:
|
||||||
x, y = x.to(device), y.to(device)
|
x, m, yb = x.to(device), m.to(device), yb.to(device)
|
||||||
lengths = (x.abs().sum(dim=2) > 1e-5).sum(dim=1)
|
mask = create_padding_mask(m)
|
||||||
mask = create_padding_mask(lengths, x.size(1))
|
|
||||||
|
|
||||||
logits = model(x, key_padding_mask=mask)
|
logits = model(x, key_padding_mask=mask)
|
||||||
correct += (logits.argmax(-1) == y).sum().item()
|
correct += (logits.argmax(-1) == yb).sum().item()
|
||||||
total += y.size(0)
|
total += yb.size(0)
|
||||||
return correct / total * 100 if total > 0 else 0.0
|
return correct / total * 100 if total > 0 else 0.0
|
||||||
|
|
||||||
# ===============================
|
|
||||||
# TRAINING LOOP
|
|
||||||
# ===============================
|
|
||||||
best_acc = 0.0
|
|
||||||
patience = 15
|
|
||||||
wait = 0
|
|
||||||
epochs = 70
|
|
||||||
|
|
||||||
for epoch in range(epochs):
|
for epoch in range(epochs):
|
||||||
loss, train_acc = train_epoch()
|
loss, train_acc = train_epoch()
|
||||||
test_acc = evaluate()
|
test_acc = evaluate()
|
||||||
|
print(f"[{epoch+1}/{epochs}] loss: {loss:.4f} | train: {train_acc:.2f}% | test: {test_acc:.2f}%")
|
||||||
print(f"[{epoch + 1:2d}/{epochs}] loss: {loss:.4f} | train: {train_acc:.2f}% | test: {test_acc:.2f}%")
|
|
||||||
|
|
||||||
scheduler.step()
|
scheduler.step()
|
||||||
|
|
||||||
if test_acc > best_acc:
|
if test_acc > best_acc:
|
||||||
best_acc = test_acc
|
best_acc = test_acc
|
||||||
wait = 0
|
wait = 0
|
||||||
@@ -362,8 +295,7 @@ def main():
|
|||||||
print("Early stopping")
|
print("Early stopping")
|
||||||
break
|
break
|
||||||
|
|
||||||
print(f"\nBest test accuracy reached: {best_acc:.2f}%")
|
print(f"\nBest test accuracy: {best_acc:.2f}%")
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
main()
|
main()
|
||||||
Reference in New Issue
Block a user