Battle against a True Hero pt 2

This commit is contained in:
2026-01-24 23:45:47 -06:00
parent 8af4758fb2
commit a987134d7a

View File

@@ -4,25 +4,33 @@ import numpy as np
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from torch.utils.data import TensorDataset, DataLoader from torch.utils.data import Dataset, DataLoader
from concurrent.futures import ProcessPoolExecutor
from tqdm import tqdm from tqdm import tqdm
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split
from concurrent.futures import ProcessPoolExecutor
# --- CONFIG --- # --- CONFIG ---
BASE_PATH = "asl_kaggle" BASE_PATH = "asl_kaggle"
CACHE_DIR = "asl_cache"
TARGET_FRAMES = 22 TARGET_FRAMES = 22
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# --- DATA LOADING WITH RELATIVE FEATURES --- # --- PREPROCESSING (RUN ONCE) ---
def process_single_file(args):
"""Process a single file - designed for multiprocessing"""
i, path, base_path, cache_dir = args
cache_path = os.path.join(cache_dir, f"sample_{i}.npy")
if os.path.exists(cache_path):
return # Skip if already cached
def load_file_to_memory(path, base_path=BASE_PATH):
try: try:
parquet_path = os.path.join(base_path, path) parquet_path = os.path.join(base_path, path)
df = pl.read_parquet(parquet_path) df = pl.read_parquet(parquet_path)
# 1. Global Anchor (Nose) # Global Anchor (Nose)
anchors = ( anchors = (
df.filter((pl.col("type") == "face") & (pl.col("landmark_index") == 0)) df.filter((pl.col("type") == "face") & (pl.col("landmark_index") == 0))
.select([ .select([
@@ -33,8 +41,7 @@ def load_file_to_memory(path, base_path=BASE_PATH):
]) ])
) )
# 2. Local Anchors (Wrists) # Local Anchors (Wrists)
# Left: 468, Right: 522
wrists = ( wrists = (
df.filter(pl.col("landmark_index").is_in([468, 522])) df.filter(pl.col("landmark_index").is_in([468, 522]))
.select([ .select([
@@ -47,40 +54,83 @@ def load_file_to_memory(path, base_path=BASE_PATH):
processed = df.join(anchors, on="frame", how="left") processed = df.join(anchors, on="frame", how="left")
# Join wrist data to the main frame
# We use a left join on frame and landmark_index to align wrist coords with their rows
processed = ( processed = (
processed.join(wrists, on=["frame", "landmark_index"], how="left") processed.join(wrists, on=["frame", "landmark_index"], how="left")
.with_columns([ .with_columns([
# Global (Nose-relative)
(pl.col("x") - pl.col("nx")).alias("x_g"), (pl.col("x") - pl.col("nx")).alias("x_g"),
(pl.col("y") - pl.col("ny")).alias("y_g"), (pl.col("y") - pl.col("ny")).alias("y_g"),
(pl.col("z") - pl.col("nz")).alias("z_g"), (pl.col("z") - pl.col("nz")).alias("z_g"),
# Local (Wrist-relative - defaults to global if not a hand point)
(pl.col("x") - pl.col("wx")).fill_null(pl.col("x") - pl.col("nx")).alias("x_l"), (pl.col("x") - pl.col("wx")).fill_null(pl.col("x") - pl.col("nx")).alias("x_l"),
(pl.col("y") - pl.col("wy")).fill_null(pl.col("y") - pl.col("ny")).alias("y_l"), (pl.col("y") - pl.col("wy")).fill_null(pl.col("y") - pl.col("ny")).alias("y_l"),
]) ])
.sort(["frame", "type", "landmark_index"]) .sort(["frame", "type", "landmark_index"])
) )
# We now have 5 channels: (x_g, y_g, z_g, x_l, y_l)
n_frames = processed["frame"].n_unique() n_frames = processed["frame"].n_unique()
# Reshape to (Frames, 543 landmarks, 5 features)
tensor = processed.select(["x_g", "y_g", "z_g", "x_l", "y_l"]).to_numpy().reshape(n_frames, 543, 5) tensor = processed.select(["x_g", "y_g", "z_g", "x_l", "y_l"]).to_numpy().reshape(n_frames, 543, 5)
# Temporal Resampling # Temporal Resampling
indices = np.linspace(0, n_frames - 1, num=TARGET_FRAMES).round().astype(int) indices = np.linspace(0, n_frames - 1, num=TARGET_FRAMES).round().astype(int)
return tensor[indices] result = tensor[indices]
# Save to cache
np.save(cache_path, result)
except Exception: except Exception:
return np.zeros((TARGET_FRAMES, 543, 5)) # Save zero tensor for failed files
np.save(cache_path, np.zeros((TARGET_FRAMES, 543, 5)))
# --- DUAL-STREAM MODEL --- def preprocess_and_cache(paths, base_path=BASE_PATH, cache_dir=CACHE_DIR):
"""Preprocess all files in parallel and save as numpy arrays"""
os.makedirs(cache_dir, exist_ok=True)
# Check if already cached
all_cached = all(os.path.exists(os.path.join(cache_dir, f"sample_{i}.npy")) for i in range(len(paths)))
if all_cached:
print("All files already cached, skipping preprocessing...")
return
print(f"Preprocessing {len(paths)} files in parallel...")
# Create arguments for each file
args_list = [(i, path, base_path, cache_dir) for i, path in enumerate(paths)]
# Process in parallel
with ProcessPoolExecutor() as executor:
list(tqdm(executor.map(process_single_file, args_list), total=len(args_list)))
print("Preprocessing complete!")
# --- FAST DATASET (LOADS FROM CACHE) ---
class CachedASLDataset(Dataset):
"""Fast dataset that loads from preprocessed numpy files"""
def __init__(self, indices, labels, cache_dir=CACHE_DIR):
self.indices = indices
self.labels = labels
self.cache_dir = cache_dir
def __len__(self):
return len(self.indices)
def __getitem__(self, idx):
sample_idx = self.indices[idx]
cache_path = os.path.join(self.cache_dir, f"sample_{sample_idx}.npy")
# Fast numpy load
data = np.load(cache_path)
label = self.labels[idx]
return torch.tensor(data, dtype=torch.float32), torch.tensor(label, dtype=torch.long)
# --- MODEL ---
class ASLClassifier(nn.Module): class ASLClassifier(nn.Module):
def __init__(self, num_classes): def __init__(self, num_classes):
super().__init__() super().__init__()
# 543 landmarks * 5 features per landmark = 2715
self.feat_dim = 543 * 5 self.feat_dim = 543 * 5
self.conv1 = nn.Conv1d(self.feat_dim, 512, kernel_size=3, padding=1) self.conv1 = nn.Conv1d(self.feat_dim, 512, kernel_size=3, padding=1)
@@ -99,10 +149,8 @@ class ASLClassifier(nn.Module):
) )
def forward(self, x): def forward(self, x):
# x shape: (Batch, 22, 543, 5)
b, t, l, f = x.shape b, t, l, f = x.shape
# Flatten landmarks and features into one vector, then transpose for Conv1d x = x.view(b, t, -1).transpose(1, 2)
x = x.view(b, t, -1).transpose(1, 2) # (Batch, 2715, 22)
x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn1(self.conv1(x)))
x = self.pool(x) x = self.pool(x)
@@ -110,7 +158,6 @@ class ASLClassifier(nn.Module):
x = F.relu(self.bn2(self.conv2(x))) x = F.relu(self.bn2(self.conv2(x)))
x = self.pool(x) x = self.pool(x)
# Global Average Pool across the time dimension
x = F.adaptive_avg_pool1d(x, 1).squeeze(-1) x = F.adaptive_avg_pool1d(x, 1).squeeze(-1)
return self.fc(self.dropout(x)) return self.fc(self.dropout(x))
@@ -119,38 +166,51 @@ class ASLClassifier(nn.Module):
# --- EXECUTION --- # --- EXECUTION ---
if __name__ == "__main__": if __name__ == "__main__":
# 1. Setup Data # 1. Setup Metadata
metadata = pl.read_csv(os.path.join(BASE_PATH, "train.csv")) metadata = pl.read_csv(os.path.join(BASE_PATH, "train.csv"))
unique_signs = sorted(metadata["sign"].unique().to_list()) unique_signs = sorted(metadata["sign"].unique().to_list())
sign_to_idx = {sign: i for i, sign in enumerate(unique_signs)} sign_to_idx = {sign: i for i, sign in enumerate(unique_signs)}
labels = [sign_to_idx[s] for s in metadata["sign"].to_list()]
paths = metadata["path"].to_list() paths = metadata["path"].to_list()
labels = [sign_to_idx[s] for s in metadata["sign"].to_list()]
# 2. Load to RAM (Parallelized) # 2. Preprocess and cache (parallelized, only runs if cache doesn't exist)
print(f"Loading {len(paths)} files into RAM with 5-channel features...") preprocess_and_cache(paths)
with ProcessPoolExecutor() as executor:
data_list = list(tqdm(executor.map(load_file_to_memory, paths), total=len(paths)))
X = torch.tensor(np.array(data_list), dtype=torch.float32) # 3. Create index mapping for train/val split
y = torch.tensor(labels, dtype=torch.long) all_indices = list(range(len(paths)))
train_indices, val_indices, train_labels, val_labels = train_test_split(
all_indices, labels, test_size=0.1, stratify=labels, random_state=42
)
# 3. Split # 4. Create datasets from cached files
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.1, stratify=y, random_state=42) train_dataset = CachedASLDataset(train_indices, train_labels)
val_dataset = CachedASLDataset(val_indices, val_labels)
train_loader = DataLoader(TensorDataset(X_train, y_train), batch_size=64, shuffle=True) # Increase batch size and workers since loading is now fast
val_loader = DataLoader(TensorDataset(X_val, y_val), batch_size=64) train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4, pin_memory=True)
val_loader = DataLoader(val_dataset, batch_size=64, num_workers=4, pin_memory=True)
# 4. Train print(f"Train samples: {len(train_dataset)}, Val samples: {len(val_dataset)}")
# 5. Train
model = ASLClassifier(len(unique_signs)).to(device) model = ASLClassifier(len(unique_signs)).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001) optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss(label_smoothing=0.1) # Helps prevent over-confidence scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=3, factor=0.5)
criterion = nn.CrossEntropyLoss(label_smoothing=0.1)
best_acc = 0.0
print(f"Starting training on {device}...") print(f"Starting training on {device}...")
for epoch in range(25): for epoch in range(25):
# Training
model.train() model.train()
train_loss = 0 train_loss = 0
for batch_x, batch_y in tqdm(train_loader, desc=f"Epoch {epoch + 1}"): train_correct = 0
train_total = 0
pbar = tqdm(train_loader, desc=f"Epoch {epoch + 1}/25 [Train]")
for batch_x, batch_y in pbar:
batch_x, batch_y = batch_x.to(device), batch_y.to(device) batch_x, batch_y = batch_x.to(device), batch_y.to(device)
optimizer.zero_grad() optimizer.zero_grad()
@@ -158,19 +218,47 @@ if __name__ == "__main__":
loss = criterion(output, batch_y) loss = criterion(output, batch_y)
loss.backward() loss.backward()
optimizer.step() optimizer.step()
train_loss += loss.item() train_loss += loss.item()
_, predicted = torch.max(output, 1)
train_total += batch_y.size(0)
train_correct += (predicted == batch_y).sum().item()
pbar.set_postfix({'loss': f'{loss.item():.4f}', 'acc': f'{100 * train_correct / train_total:.1f}%'})
# Validation # Validation
model.eval() model.eval()
correct, total = 0, 0 val_correct, val_total = 0, 0
val_loss = 0
with torch.no_grad(): with torch.no_grad():
for vx, vy in val_loader: for vx, vy in tqdm(val_loader, desc=f"Epoch {epoch + 1}/25 [Val]"):
vx, vy = vx.to(device), vy.to(device) vx, vy = vx.to(device), vy.to(device)
pred = model(vx).argmax(1) output = model(vx)
correct += (pred == vy).sum().item() val_loss += criterion(output, vy).item()
total += vy.size(0) pred = output.argmax(1)
val_correct += (pred == vy).sum().item()
val_total += vy.size(0)
print(f"Epoch {epoch + 1} | Loss: {train_loss / len(train_loader):.4f} | Val Acc: {100 * correct / total:.2f}%") avg_train_loss = train_loss / len(train_loader)
avg_val_loss = val_loss / len(val_loader)
train_acc = 100 * train_correct / train_total
val_acc = 100 * val_correct / val_total
scheduler.step(avg_val_loss)
print(f"\nEpoch {epoch + 1}/25:")
print(f" Train Loss: {avg_train_loss:.4f} | Train Acc: {train_acc:.2f}%")
print(f" Val Loss: {avg_val_loss:.4f} | Val Acc: {val_acc:.2f}%")
# Save best model
if val_acc > best_acc:
best_acc = val_acc
torch.save(model.state_dict(), "best_asl_model.pth")
print(f" ✓ Best model saved! (Val Acc: {val_acc:.2f}%)\n")
# Checkpoint every 5 epochs
if (epoch + 1) % 5 == 0: if (epoch + 1) % 5 == 0:
torch.save(model.state_dict(), f"asl_model_v2_e{epoch + 1}.pth") torch.save(model.state_dict(), f"asl_model_e{epoch + 1}.pth")
print(f"\nTraining complete! Best validation accuracy: {best_acc:.2f}%")