grok lock in pt 3
This commit is contained in:
130
training.py
130
training.py
@@ -14,6 +14,7 @@ from sklearn.preprocessing import LabelEncoder, StandardScaler
|
||||
from multiprocessing import Pool, cpu_count
|
||||
from functools import partial
|
||||
from tqdm import tqdm
|
||||
from collections import Counter
|
||||
|
||||
|
||||
def load_kaggle_asl_data(base_path):
|
||||
@@ -26,7 +27,6 @@ def load_kaggle_asl_data(base_path):
|
||||
def extract_hand_landmarks_from_parquet(path):
|
||||
try:
|
||||
df = pd.read_parquet(path)
|
||||
# Take either left or right hand - prefer the one with more landmarks
|
||||
left = df[df["type"] == "left_hand"]
|
||||
right = df[df["type"] == "right_hand"]
|
||||
|
||||
@@ -53,8 +53,8 @@ def extract_hand_landmarks_from_parquet(path):
|
||||
])
|
||||
landmarks_seq.append(lm_list)
|
||||
|
||||
return np.array(landmarks_seq, dtype=np.float32) # (T, 21, 3)
|
||||
except Exception:
|
||||
return np.array(landmarks_seq, dtype=np.float32)
|
||||
except:
|
||||
return None
|
||||
|
||||
|
||||
@@ -63,20 +63,20 @@ def get_features_sequence(landmarks_seq, max_frames=100):
|
||||
return None
|
||||
|
||||
# Center on wrist
|
||||
landmarks_seq = landmarks_seq - landmarks_seq[:, 0:1, :]
|
||||
landmarks_seq -= landmarks_seq[:, 0:1, :]
|
||||
|
||||
# Better scale: distance between index finger tip and middle finger tip
|
||||
# Scale using index → middle finger tip distance (more stable than single point)
|
||||
scale = np.linalg.norm(landmarks_seq[:, 8] - landmarks_seq[:, 12], axis=1, keepdims=True)
|
||||
scale = np.maximum(scale, 1e-6)
|
||||
landmarks_seq = landmarks_seq / scale
|
||||
landmarks_seq /= scale
|
||||
|
||||
# Flatten to (T, 63)
|
||||
# Flatten
|
||||
seq = landmarks_seq.reshape(landmarks_seq.shape[0], -1)
|
||||
|
||||
# Pad or truncate
|
||||
# Pad / truncate
|
||||
if len(seq) < max_frames:
|
||||
pad = np.zeros((max_frames - len(seq), seq.shape[1]), dtype=np.float32)
|
||||
seq = np.concatenate([seq, pad], axis=0)
|
||||
seq = np.concatenate([seq, pad])
|
||||
else:
|
||||
seq = seq[:max_frames]
|
||||
|
||||
@@ -84,21 +84,18 @@ def get_features_sequence(landmarks_seq, max_frames=100):
|
||||
|
||||
|
||||
def process_row(row, base_path, max_frames=100):
|
||||
path = os.path.join(base_path, row['path'])
|
||||
path = os.path.join(base_path, row["path"])
|
||||
if not os.path.exists(path):
|
||||
return None, None
|
||||
|
||||
try:
|
||||
lm_seq = extract_hand_landmarks_from_parquet(path)
|
||||
if lm_seq is None:
|
||||
lm = extract_hand_landmarks_from_parquet(path)
|
||||
if lm is None:
|
||||
return None, None
|
||||
|
||||
feat_seq = get_features_sequence(lm_seq, max_frames)
|
||||
if feat_seq is None:
|
||||
feat = get_features_sequence(lm, max_frames)
|
||||
if feat is None:
|
||||
return None, None
|
||||
|
||||
return feat_seq, row['sign']
|
||||
except Exception:
|
||||
return feat, row["sign"]
|
||||
except:
|
||||
return None, None
|
||||
|
||||
|
||||
@@ -123,7 +120,7 @@ class TransformerASL(nn.Module):
|
||||
self.norm_in = nn.LayerNorm(d_model)
|
||||
self.pos = PositionalEncoding(d_model)
|
||||
|
||||
encoder_layer = nn.TransformerEncoderLayer(
|
||||
enc_layer = nn.TransformerEncoderLayer(
|
||||
d_model=d_model,
|
||||
nhead=nhead,
|
||||
dim_feedforward=d_model * 4,
|
||||
@@ -132,7 +129,7 @@ class TransformerASL(nn.Module):
|
||||
batch_first=True,
|
||||
norm_first=True
|
||||
)
|
||||
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
||||
self.encoder = nn.TransformerEncoder(enc_layer, num_layers=num_layers)
|
||||
|
||||
self.head = nn.Sequential(
|
||||
nn.LayerNorm(d_model),
|
||||
@@ -155,7 +152,7 @@ def create_padding_mask(lengths, max_len):
|
||||
|
||||
def main():
|
||||
# ===============================
|
||||
# DEVICE SETUP
|
||||
# DEVICE
|
||||
# ===============================
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
print(f"Using device: {device}")
|
||||
@@ -163,13 +160,14 @@ def main():
|
||||
print("GPU:", torch.cuda.get_device_name(0))
|
||||
|
||||
# ===============================
|
||||
# PATHS & PARAMETERS
|
||||
# CONFIG
|
||||
# ===============================
|
||||
base_path = "asl_kaggle" # ← CHANGE THIS TO YOUR ACTUAL FOLDER
|
||||
base_path = "asl_kaggle" # ← CHANGE THIS TO YOUR ACTUAL PATH
|
||||
max_frames = 100
|
||||
MIN_SAMPLES_PER_CLASS = 6 # ← important! prevents stratified split crash
|
||||
|
||||
# ===============================
|
||||
# DATA PROCESSING
|
||||
# DATA LOADING & PROCESSING
|
||||
# ===============================
|
||||
print("Loading metadata...")
|
||||
train_df, sign_to_idx = load_kaggle_asl_data(base_path)
|
||||
@@ -184,25 +182,25 @@ def main():
|
||||
rows
|
||||
),
|
||||
total=len(rows),
|
||||
desc="Processing"
|
||||
desc="Extracting landmarks"
|
||||
))
|
||||
|
||||
X, y = [], []
|
||||
X_list, y_list = [], []
|
||||
for feat, sign in results:
|
||||
if feat is not None:
|
||||
X.append(feat)
|
||||
y.append(sign)
|
||||
X_list.append(feat)
|
||||
y_list.append(sign)
|
||||
|
||||
if not X:
|
||||
print("No valid sequences found!")
|
||||
if not X_list:
|
||||
print("No valid sequences found. Check parquet files / paths.")
|
||||
return
|
||||
|
||||
X = np.stack(X)
|
||||
print(f"Loaded {len(X)} valid samples | shape: {X.shape}")
|
||||
X = np.stack(X_list)
|
||||
print(f"Loaded {len(X)} valid sequences | shape: {X.shape}")
|
||||
|
||||
# Global normalization - very important!
|
||||
# Global normalization (very important for stability)
|
||||
print("Before global norm → mean:", X.mean(), "std:", X.std())
|
||||
X = np.clip(X, -5.0, 5.0) # prevent crazy outliers
|
||||
X = np.clip(X, -5.0, 5.0)
|
||||
mean = X.mean(axis=(0, 1), keepdims=True)
|
||||
std = X.std(axis=(0, 1), keepdims=True) + 1e-8
|
||||
X = (X - mean) / std
|
||||
@@ -212,15 +210,30 @@ def main():
|
||||
# LABELS
|
||||
# ===============================
|
||||
le = LabelEncoder()
|
||||
y = le.fit_transform(y_list)
|
||||
|
||||
# Remove classes with too few samples (prevents stratify error)
|
||||
counts = Counter(y)
|
||||
valid_classes = [cls for cls, cnt in counts.items() if cnt >= MIN_SAMPLES_PER_CLASS]
|
||||
|
||||
mask = np.isin(y, valid_classes)
|
||||
X = X[mask]
|
||||
y = y[mask]
|
||||
|
||||
# Re-encode labels consecutively (0,1,2,... no gaps)
|
||||
le = LabelEncoder()
|
||||
y = le.fit_transform(y)
|
||||
num_classes = len(le.classes_)
|
||||
print(f"Number of classes: {num_classes}")
|
||||
|
||||
print(f"After filtering: {len(X)} samples remain | {len(le.classes_)} classes")
|
||||
|
||||
# ===============================
|
||||
# SPLIT
|
||||
# ===============================
|
||||
X_train, X_test, y_train, y_test = train_test_split(
|
||||
X, y, test_size=0.15, stratify=y, random_state=42
|
||||
X, y,
|
||||
test_size=0.15,
|
||||
stratify=y, # should be safe now
|
||||
random_state=42
|
||||
)
|
||||
|
||||
# ===============================
|
||||
@@ -258,7 +271,7 @@ def main():
|
||||
# ===============================
|
||||
model = TransformerASL(
|
||||
input_dim=63,
|
||||
num_classes=num_classes,
|
||||
num_classes=len(le.classes_),
|
||||
d_model=192,
|
||||
nhead=6,
|
||||
num_layers=4
|
||||
@@ -274,18 +287,15 @@ def main():
|
||||
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10)
|
||||
|
||||
# ===============================
|
||||
# TRAIN / EVAL FUNCTIONS
|
||||
# TRAIN / EVAL
|
||||
# ===============================
|
||||
def train_epoch():
|
||||
model.train()
|
||||
total_loss = 0
|
||||
correct = 0
|
||||
total = 0
|
||||
correct = total = 0
|
||||
|
||||
for x, y in tqdm(train_loader, desc="Training"):
|
||||
for x, y in tqdm(train_loader, desc="Train"):
|
||||
x, y = x.to(device), y.to(device)
|
||||
|
||||
# Rough length estimation
|
||||
lengths = (x.abs().sum(dim=2) > 1e-5).sum(dim=1)
|
||||
mask = create_padding_mask(lengths, x.size(1))
|
||||
|
||||
@@ -297,13 +307,10 @@ def main():
|
||||
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=0.8)
|
||||
|
||||
if torch.isnan(loss) or grad_norm > 20:
|
||||
print(f"Warning - large grad or NaN! norm = {grad_norm:.2f}")
|
||||
|
||||
optimizer.step()
|
||||
|
||||
total_loss += loss.item()
|
||||
correct += (logits.argmax(dim=-1) == y).sum().item()
|
||||
correct += (logits.argmax(-1) == y).sum().item()
|
||||
total += y.size(0)
|
||||
|
||||
return total_loss / len(train_loader), correct / total * 100
|
||||
@@ -311,31 +318,30 @@ def main():
|
||||
@torch.no_grad()
|
||||
def evaluate():
|
||||
model.eval()
|
||||
correct = 0
|
||||
total = 0
|
||||
correct = total = 0
|
||||
for x, y in test_loader:
|
||||
x, y = x.to(device), y.to(device)
|
||||
lengths = (x.abs().sum(dim=2) > 1e-5).sum(dim=1)
|
||||
mask = create_padding_mask(lengths, x.size(1))
|
||||
|
||||
logits = model(x, key_padding_mask=mask)
|
||||
correct += (logits.argmax(dim=-1) == y).sum().item()
|
||||
correct += (logits.argmax(-1) == y).sum().item()
|
||||
total += y.size(0)
|
||||
return correct / total * 100 if total > 0 else 0
|
||||
return correct / total * 100 if total > 0 else 0.0
|
||||
|
||||
# ===============================
|
||||
# TRAINING LOOP
|
||||
# ===============================
|
||||
best_acc = 0
|
||||
best_acc = 0.0
|
||||
patience = 15
|
||||
wait = 0
|
||||
epochs = 60
|
||||
epochs = 70
|
||||
|
||||
for epoch in range(epochs):
|
||||
loss, train_acc = train_epoch()
|
||||
test_acc = evaluate()
|
||||
|
||||
print(f"Epoch {epoch + 1:2d}/{epochs} | Loss: {loss:.4f} | Train: {train_acc:.2f}% | Test: {test_acc:.2f}%")
|
||||
print(f"[{epoch + 1:2d}/{epochs}] loss: {loss:.4f} | train: {train_acc:.2f}% | test: {test_acc:.2f}%")
|
||||
|
||||
scheduler.step()
|
||||
|
||||
@@ -345,18 +351,18 @@ def main():
|
||||
torch.save({
|
||||
'model': model.state_dict(),
|
||||
'optimizer': optimizer.state_dict(),
|
||||
'label_encoder': le.classes_,
|
||||
'epoch': epoch,
|
||||
'acc': best_acc
|
||||
'label_encoder_classes': le.classes_,
|
||||
'acc': best_acc,
|
||||
'epoch': epoch
|
||||
}, "best_asl_transformer.pth")
|
||||
print(" → New best model saved")
|
||||
print(" → New best saved")
|
||||
else:
|
||||
wait += 1
|
||||
if wait >= patience:
|
||||
print("Early stopping triggered")
|
||||
print("Early stopping")
|
||||
break
|
||||
|
||||
print(f"\nTraining finished. Best test accuracy: {best_acc:.2f}%")
|
||||
print(f"\nBest test accuracy reached: {best_acc:.2f}%")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
Reference in New Issue
Block a user