i'm going to fail this test
Some checks are pending
Some checks are pending
This commit is contained in:
@@ -62,7 +62,7 @@ v^2 = \frac{k}{m}A^2(1-\frac{x^2}{A^2})
|
|||||||
$$
|
$$
|
||||||
Given $mv^2=kA^2$:
|
Given $mv^2=kA^2$:
|
||||||
$$
|
$$
|
||||||
v_max=\sqrt{\frac{k}{m}}A
|
v_{\text{max}}=\sqrt{\frac{k}{m}}A
|
||||||
$$
|
$$
|
||||||
|
|
||||||
With another step of substitution:
|
With another step of substitution:
|
||||||
@@ -85,3 +85,198 @@ $$
|
|||||||
f=\frac{1}{t}=\frac{1}{2\pi}\sqrt{\frac{k}{m}}
|
f=\frac{1}{t}=\frac{1}{2\pi}\sqrt{\frac{k}{m}}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
Here's the expanded derivation with the characteristic equation and solution in a markdown format with LaTeX code blocks:
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
# Derivation of the Mass-Spring SHM Equation Using Lagrangian Mechanics
|
||||||
|
|
||||||
|
We start with the equation of motion derived from the Lagrangian approach:
|
||||||
|
|
||||||
|
$$
|
||||||
|
m \ddot{x} + kx = 0
|
||||||
|
$$
|
||||||
|
|
||||||
|
## Step 1: Rewrite as a Second-Order ODE
|
||||||
|
$$
|
||||||
|
\ddot{x} + \frac{k}{m}x = 0
|
||||||
|
$$
|
||||||
|
|
||||||
|
Let:
|
||||||
|
$$
|
||||||
|
\omega^2 = \frac{k}{m}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Thus, the equation becomes:
|
||||||
|
$$
|
||||||
|
\ddot{x} + \omega^2 x = 0
|
||||||
|
$$
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Step 2: Characteristic Equation
|
||||||
|
|
||||||
|
To solve this second-order differential equation, assume a solution of the form:
|
||||||
|
$$
|
||||||
|
x(t) = e^{\lambda t}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Substitute $ $x(t) = e^{\lambda t}$ into the differential equation:
|
||||||
|
$$
|
||||||
|
\lambda^2 e^{\lambda t} + \omega^2 e^{\lambda t} = 0
|
||||||
|
$$
|
||||||
|
|
||||||
|
Factoring out $ $e^{\lambda t}$ (which is never zero):
|
||||||
|
$$
|
||||||
|
\lambda^2 + \omega^2 = 0
|
||||||
|
$$
|
||||||
|
|
||||||
|
The characteristic equation is:
|
||||||
|
$$
|
||||||
|
\lambda^2 + \omega^2 = 0
|
||||||
|
$$
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Step 3: Solve for $ $\lambda$
|
||||||
|
|
||||||
|
Rearranging:
|
||||||
|
$$
|
||||||
|
\lambda^2 = -\omega^2
|
||||||
|
$$
|
||||||
|
|
||||||
|
Taking the square root:
|
||||||
|
$$
|
||||||
|
\lambda = \pm i\omega
|
||||||
|
$$
|
||||||
|
|
||||||
|
Thus, the general solution for $ $x(t)$ is a linear combination of exponential functions:
|
||||||
|
$$
|
||||||
|
x(t) = C_1 e^{i\omega t} + C_2 e^{-i\omega t}
|
||||||
|
$$
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Step 4: Convert to Real Solution
|
||||||
|
|
||||||
|
Using Euler's formula:
|
||||||
|
$$
|
||||||
|
e^{i\omega t} = \cos(\omega t) + i\sin(\omega t)
|
||||||
|
$$
|
||||||
|
$$
|
||||||
|
e^{-i\omega t} = \cos(\omega t) - i\sin(\omega t)
|
||||||
|
$$
|
||||||
|
|
||||||
|
The general solution becomes:
|
||||||
|
$$
|
||||||
|
x(t) = C_1 (\cos(\omega t) + i\sin(\omega t)) + C_2 (\cos(\omega t) - i\sin(\omega t))
|
||||||
|
$$
|
||||||
|
|
||||||
|
Grouping real and imaginary parts, let:
|
||||||
|
$$
|
||||||
|
A = C_1 + C_2, \quad B = i(C_1 - C_2)
|
||||||
|
$$
|
||||||
|
|
||||||
|
The solution can then be written as:
|
||||||
|
$$
|
||||||
|
x(t) = A \cos(\omega t) + B \sin(\omega t)
|
||||||
|
$$
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Step 5: Final General Solution
|
||||||
|
|
||||||
|
Alternatively, write the solution in amplitude-phase form:
|
||||||
|
$$
|
||||||
|
x(t) = C \cos(\omega t + \phi)
|
||||||
|
$$
|
||||||
|
|
||||||
|
where:
|
||||||
|
- $C = \sqrt{A^2 + B^2}$ (amplitude),
|
||||||
|
- $\phi = \tan^{-1}\left(\frac{B}{A}\right)$ (phase angle).
|
||||||
|
|
||||||
|
This is the general solution for the simple harmonic motion of a mass-spring system.
|
||||||
|
|
||||||
|
# Standing Waves
|
||||||
|
|
||||||
|
Standing waves occur when waves reflect and interfere in a confined space, forming resonance at specific frequencies. The resonance conditions depend on the boundary conditions: both ends closed, one end closed and the other open, or both ends open.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## **Both Ends Closed**
|
||||||
|
|
||||||
|
When both ends of a tube or string are closed, **nodes** form at both ends because there is no displacement at the boundaries. The wave pattern consists of an integer number of **half-wavelengths** fitting inside the length $L$.
|
||||||
|
|
||||||
|
### **Resonance Condition:**
|
||||||
|
$$
|
||||||
|
L = n \frac{\lambda}{2}, \quad n = 1, 2, 3, \dots
|
||||||
|
$$
|
||||||
|
|
||||||
|
### **Resonant Frequencies:**
|
||||||
|
$$
|
||||||
|
f_n = \frac{n v}{2L}, \quad n = 1, 2, 3, \dots
|
||||||
|
$$
|
||||||
|
|
||||||
|
### **How to Calculate $n$:**
|
||||||
|
For this case, the harmonic number $n$ is simply the **number of half-wavelengths in the tube**:
|
||||||
|
$$
|
||||||
|
n = \text{number of nodes} - 1 = \text{number of antinodes}
|
||||||
|
$$
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## **One End Closed, One End Open**
|
||||||
|
|
||||||
|
When one end is closed, a **node** forms at the closed end (no displacement), and an **antinode** forms at the open end (maximum displacement). Only **odd harmonics** fit in this setup because the length must accommodate an odd number of quarter-wavelengths.
|
||||||
|
|
||||||
|
### **Resonance Condition:**
|
||||||
|
$$
|
||||||
|
L = (2n-1) \frac{\lambda}{4}, \quad n = 1, 2, 3, \dots
|
||||||
|
$$
|
||||||
|
|
||||||
|
### **Resonant Frequencies:**
|
||||||
|
$$
|
||||||
|
f_n = \frac{(2n-1) v}{4L}, \quad n = 1, 2, 3, \dots
|
||||||
|
$$
|
||||||
|
|
||||||
|
### **How to Calculate $n$:**
|
||||||
|
For this case, $n$ is determined by the **sum of nodes and antinodes**:
|
||||||
|
$$
|
||||||
|
n = \text{number of nodes} + \text{number of antinodes}
|
||||||
|
$$
|
||||||
|
Since there is always **one $n = 1, 2, 3, \dots$.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## **Both Ends Open**
|
||||||
|
|
||||||
|
When both ends are open, **antinodes** form at both ends because displacement is maximum at the boundaries. The standing wave pattern is identical to the **both ends closed** case.
|
||||||
|
|
||||||
|
### **Resonance Condition:**
|
||||||
|
$$
|
||||||
|
L = n \frac{\lambda}{2}, \quad n = 1, 2, 3, \dots
|
||||||
|
$$
|
||||||
|
|
||||||
|
### **Resonant Frequencies:**
|
||||||
|
$$
|
||||||
|
f_n = \frac{n v}{2L}, \quad n = 1, 2, 3, \dots
|
||||||
|
$$
|
||||||
|
|
||||||
|
### **How to Calculate $ $ n $:**
|
||||||
|
Since an antinode exists at each end, the harmonic number $ $ n $ corresponds to the number of **antinodes**:
|
||||||
|
$$
|
||||||
|
n = \text{number of antinodes}
|
||||||
|
$$
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## **Summary Table: Resonance Conditions and Harmonics Calculation**
|
||||||
|
|
||||||
|
| Condition | Node-Antinode Pattern | Wavelength Relation | Resonant Frequency | Harmonic Number Calculation |
|
||||||
|
|----------------------------|------------------------------|--------------------------------------------|--------------------------|-----------------------------|
|
||||||
|
| **Both Ends Closed** | Node at both ends | $L = n \frac{\lambda}{2}$ | $f_n = \frac{n v}{2L}$ | $n = \text{nodes} - 1 = \text{antinodes}$ |
|
||||||
|
| **One End Closed, One Open** | Node at closed, antinode at open | $L = (2n-1) \frac{\lambda}{4}$ | $f_n = \frac{(2n-1)v}{4L}$ | $n = \text{nodes} + \text{antinodes}$ |
|
||||||
|
| **Both Ends Open** | Antinode at both ends | $L = n \frac{\lambda}{2}$ | $f_n = \frac{n v}{2L}$ | $n = \text{antinodes}$ |
|
||||||
|
|
||||||
|
Each case follows the fundamental rule that resonance occurs when the physical constraints match a standing wave pattern, leading to **natural frequencies of oscillation**.
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user