Files
paper/IEEE-conference-template-062824.aux
2025-07-19 17:13:24 -05:00

55 lines
4.4 KiB
TeX

\relax
\citation{hendrycks2021measuringmathematicalproblemsolving}
\citation{ahn2024largelanguagemodelsmathematical}
\citation{cobbe2021trainingverifierssolvemath}
\citation{hoffmann2022trainingcomputeoptimallargelanguage}
\@writefile{toc}{\contentsline {section}{\numberline {I}Introduction}{1}{}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {I}{\ignorespaces Comparison of LLM Computational Requirements}}{1}{}\protected@file@percent }
\newlabel{tab:model-sizes}{{I}{1}{}{table.1}{}}
\citation{wang2024neuralsymbolicoverview}
\citation{hendrycksmath2021}
\citation{hendrycksmath2021}
\citation{ahn2024largelanguagemodelsmathematical}
\@writefile{toc}{\contentsline {section}{\numberline {II}Related Works}{2}{}\protected@file@percent }
\citation{besiroglu2024chinchillascalingreplicationattempt}
\citation{besold2017neuralsymboliclearningreasoningsurvey}
\citation{gao2023palprogramaidedlanguagemodels}
\citation{xu2024chatglmmathimprovingmathproblemsolving}
\citation{petruzzellis2024assessingemergentsymbolicreasoning}
\@writefile{toc}{\contentsline {section}{\numberline {III}Methods}{3}{}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {\mbox {III-A}}Baseline MLP Feed-Forward Block}{3}{}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {\mbox {III-B}}Symbolic Mutation of the Second Linear Layer}{4}{}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{\numberline {\mbox {III-B}0a}Masking}{4}{}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{\numberline {\mbox {III-B}0b}Selective Extraction}{4}{}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{\numberline {\mbox {III-B}0c}Linear Encoding}{4}{}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{\numberline {\mbox {III-B}0d}Symbolic Rule Function}{4}{}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{\numberline {\mbox {III-B}0e}Linear Decoding}{4}{}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{\numberline {\mbox {III-B}0f}Normalization}{4}{}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{\numberline {\mbox {III-B}0g}Reintegration}{4}{}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{\numberline {\mbox {III-B}0h}Final Output}{4}{}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {\mbox {III-C}}Summary Pipeline}{4}{}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {\mbox {III-D}}Training Details}{4}{}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {IV}Results}{4}{}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {\mbox {IV-A}}Evaluation Overview}{4}{}\protected@file@percent }
\bibstyle{IEEEtran}
\bibdata{references}
\bibcite{hendrycks2021measuringmathematicalproblemsolving}{1}
\bibcite{ahn2024largelanguagemodelsmathematical}{2}
\bibcite{cobbe2021trainingverifierssolvemath}{3}
\bibcite{hoffmann2022trainingcomputeoptimallargelanguage}{4}
\bibcite{hendrycksmath2021}{5}
\bibcite{besiroglu2024chinchillascalingreplicationattempt}{6}
\bibcite{besold2017neuralsymboliclearningreasoningsurvey}{7}
\bibcite{gao2023palprogramaidedlanguagemodels}{8}
\bibcite{xu2024chatglmmathimprovingmathproblemsolving}{9}
\bibcite{petruzzellis2024assessingemergentsymbolicreasoning}{10}
\@writefile{lot}{\contentsline {table}{\numberline {II}{\ignorespaces Final Answer Accuracy (\%) Across Benchmarks}}{5}{}\protected@file@percent }
\newlabel{tab:benchmark-accuracy}{{II}{5}{}{table.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {\mbox {IV-B}}Accuracy Comparison Across Models}{5}{}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {\mbox {IV-C}}Generalization to Multi-step Reasoning}{5}{}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Step-wise solution accuracy across increasing solution step counts. Rule-mutated model generalizes significantly better to long-horizon reasoning. Error bars represent 95\% confidence intervals.}}{5}{}\protected@file@percent }
\newlabel{fig:step-accuracy}{{1}{5}{}{figure.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {\mbox {IV-D}}Summary of Statistical Measures}{5}{}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{References}{5}{}\protected@file@percent }
\gdef \@abspage@last{5}