Parametric Surface Plotter
This project provides a simple way to define and plot parametric 3D surfaces (or curves) using Python.
-
A surface is defined with two parameters:
x = x(t, u), \quad y = y(t, u), \quad z = z(t, u) -
A curve is defined with a single parameter:
x = x(t), \quad y = y(t), \quad z = z(t)
The script will:
- Generate a mesh of points (for surfaces) or a set of points (for curves)
- Plot the result in 3D with Matplotlib
- Save the plot as a high-definition
.svgfile, named after the parent directory of the script
Requirements
Install dependencies:
pip install -r requirements.txt
Usage
Run the script:
python plot_surface.py
A window with the 3D plot will open, and an .svg will be saved in the same directory.
Defining Your Own Geometry
1. Surfaces (two parameters: t, u)
Surfaces require two parameters because they are 2D objects.
You define three functions in plot_surface.py:
def x_func(t, u): return ...
def y_func(t, u): return ...
def z_func(t, u): return ...
Examples:
-
Cone
x = 4t\cos(u), \quad y = 4t\sin(u), \quad z = 10tdef x_func(t, u): return 4 * t * np.cos(u) def y_func(t, u): return 4 * t * np.sin(u) def z_func(t, u): return 10 * t -
Sphere (radius 1)
x = \cos(u)\sin(t), \quad y = \sin(u)\sin(t), \quad z = \cos(t)def x_func(t, u): return np.cos(u) * np.sin(t) def y_func(t, u): return np.sin(u) * np.sin(t) def z_func(t, u): return np.cos(t)
You can adjust parameter ranges in generate_mesh():
def generate_mesh(t_range=(0, 5), u_range=(0, 2*np.pi), n_t=50, n_u=100):
...
- Sphere →
t_range=(0, np.pi),u_range=(0, 2*np.pi) - Cone →
t_range=(0, 5),u_range=(0, 2*np.pi)
2. Curves (one parameter: t)
If your object is not a surface but a curve, you only need one parameter t.
Example: Helix
x = \cos(t), \quad y = \sin(t), \quad z = t
def x_func(t): return np.cos(t)
def y_func(t): return np.sin(t)
def z_func(t): return t
Here you don’t need u at all. The code can be simplified to generate a 1D array of points and plot them as a line in 3D.
Which Should I Use?
- Two parameters (t, u): Use this for surfaces (sphere, torus, cone, paraboloid, etc.).
- One parameter (t): Use this for curves (helix, circle, line, parametric trajectory).
👉 A quick rule:
- If your equation is like
z = f(x, y), or implicit in 3 variables, you usually need two parameters. - If your equation is like
x = f(t), y = g(t), z = h(t), then one parameter is enough.
Notes
- Always use
numpyfunctions (np.sin,np.cos, etc.), not Python’s built-ins, since the parameters are arrays. - Some surfaces (like cones, hyperboloids) have two branches; you can add an additional
z_func_negif needed. - The SVG is automatically named after the script’s parent directory.
✅ With this, you can parametrize and visualize both surfaces (2D) and curves (1D) by editing only a few functions.