First Name

Last Name

Lab 8

If r(t) is the position vector of a particle in the plane at time t, find the indicated vector.

1) Find the velocity vector.

$$\mathbf{r}(t) = (-7t^2 - 8)\mathbf{i} + \left(\frac{1}{21}t^3\right)\mathbf{j}$$

A)
$$\mathbf{v} = (-14t)\mathbf{i} - \left(\frac{1}{7}t^2\right)$$

B)
$$\mathbf{v} = (-14t)\mathbf{i} + \left(\frac{1}{7}t^2\right)\mathbf{j}$$

C)
$$\mathbf{v} = (-14)\mathbf{i} + \left(\frac{2}{7}\mathbf{t}\right)\mathbf{j}$$

A)
$$\mathbf{v} = (-14t)\mathbf{i} - \left(\frac{1}{7}t^2\right)\mathbf{j}$$
 B) $\mathbf{v} = (-14t)\mathbf{i} + \left(\frac{1}{7}t^2\right)\mathbf{j}$ C) $\mathbf{v} = (-14)\mathbf{i} + \left(\frac{2}{7}t\right)\mathbf{j}$ D) $\mathbf{v} = \left(\frac{1}{7}t^2\right)\mathbf{i} + (-14t)\mathbf{j}$

2) Find the acceleration vector.

$$\mathbf{r}(t) = (\cos 3t)\mathbf{i} + (5\sin t)\mathbf{j}$$

A)
$$a = (-3 \cos 3t)i + (5 \sin t)j$$

B)
$$\mathbf{a} = (9 \cos 3t)\mathbf{i} + (-5 \sin t)\mathbf{j}$$

C)
$$\mathbf{a} = (-9 \cos 3t)\mathbf{i} + (-25 \sin t)\mathbf{j}$$

D)
$$\mathbf{a} = (-9 \cos 3t)\mathbf{i} + (-5 \sin t)\mathbf{j}$$

The position vector of a particle is r(t). Find the requested vector.

3) The velocity at
$$t = 3$$
 for $\mathbf{r}(t) = (9t^2 + 4t + 7)\mathbf{i} - 5t^3\mathbf{j} + (2 - t^2)\mathbf{k}$

A)
$$\mathbf{v}(3) = 31\mathbf{i} - 45\mathbf{j} - 3\mathbf{k}$$

B)
$$\mathbf{v}(3) = 58\mathbf{i} - 135\mathbf{j} - 6\mathbf{k}$$

C)
$$\mathbf{v}(3) = 50\mathbf{i} - 135\mathbf{j} - 6\mathbf{k}$$

D)
$$\mathbf{v}(3) = 58\mathbf{i} + 135\mathbf{j} + 6\mathbf{k}$$

4) The velocity at
$$t = 0$$
 for $\mathbf{r}(t) = \cos(2t)\mathbf{i} + 7\ln(t-3)\mathbf{j} - \frac{t^3}{9}\mathbf{k}$

A)
$$\mathbf{v}(0) = -2\mathbf{i} - \frac{7}{3}\mathbf{j}$$
 B) $\mathbf{v}(0) = 2\mathbf{i} - \frac{7}{3}\mathbf{j}$ C) $\mathbf{v}(0) = \frac{7}{3}\mathbf{j}$

B)
$$\mathbf{v}(0) = 2\mathbf{i} - \frac{7}{3}\mathbf{j}$$

$$\mathbf{C}) \mathbf{v}(0) = \frac{7}{3}\mathbf{j}$$

$$\mathbf{D}) \mathbf{v}(0) = -\frac{7}{3}\mathbf{j}$$

5) The acceleration at
$$t = \frac{\pi}{4}$$
 for $\mathbf{r}(t) = (4 \sin 2t)\mathbf{i} - (5 \cos 2t)\mathbf{j} + (3 \csc 2t)\mathbf{k}$

A)
$$a\left(\frac{\pi}{4}\right) = -16\mathbf{i} - 12\mathbf{l}$$

B)
$$a\left(\frac{\pi}{4}\right) = -16i + 12k$$

C)
$$a\left(\frac{\pi}{4}\right) = 16\mathbf{i} + 12\mathbf{k}$$

A)
$$a\left(\frac{\pi}{4}\right) = -16i - 12k$$
 B) $a\left(\frac{\pi}{4}\right) = -16i + 12k$ C) $a\left(\frac{\pi}{4}\right) = 16i + 12k$ D) $a\left(\frac{\pi}{4}\right) = 20j + 12k$

The vector r(t) is the position vector of a particle at time t. Find the angle (exact value in radians) between the velocity and the acceleration vectors at time t = 0.

6)
$$\mathbf{r}(t) = \sqrt{2}t\mathbf{i} + (\sqrt{2}t + \frac{\pi}{4}t^2)\mathbf{k}$$

Solve the problem. Assume the x-axis is horizontal, the positive y-axis is vertical (opposite g), the ground is horizontal, and only the gravitational force acts on the objects.

7) A projectile is launched from Find the position function r		radians to the horizontal and	an initial speed of 75 ft/sec.
A) $\mathbf{r}(t) = (75t \cos \alpha)\mathbf{i} + (75t \sin \alpha - 16t^2)\mathbf{j}$		B) $\mathbf{r}(t) = (75t \sin \alpha)\mathbf{i} + (75t \cos \alpha - 16t^2)\mathbf{j}$	
C) $\mathbf{r}(t) = (75t \sin \alpha - 16t^2)\mathbf{i} + (75t \cos \alpha)\mathbf{j}$		D) $\mathbf{r}(t) = (75t \cos \alpha - 32t^2)\mathbf{i} + (75t \sin \alpha)\mathbf{j}$	
8) A projectile is fired at a spec Round your answer to the r	-	f 34°. How long will it take to	get 20 km downrange?
A) 32 sec	B) 30 sec	C) 28 sec	D) Never
9) A projectile is fired with an projectile? Round your answ	-	an angle of 45°. What is the gr	reatest height reached by th
A) 85,556.3 m	B) 34,920.9 m	C) 84.4 m	D) 8730.2 m
10) A spring gun at ground leve initial speed? Round your a	_	le of 33°. The ball lands 12 m	away. What was the ball's
A) 14.7 m/sec	B) 3.6 m/sec	C) 128.7 m/sec	D) 11.3 m/sec
11) A projectile is fired from a h horizontal. Find the height	C	al velocity of 115 ft/sec at an a ds. Round your answer to the	C
A) 262.1 ft	B) 330.9 ft	C) 70.1 ft	D) 63.5 ft
12) An athlete puts a 16-lb shot 47 ft/sec. How far forward o		izontal from 6.1 ft above the g hits the ground? Round your a	
A) 6.8 ft	B) 2 ft	C) 74.4 ft	D) 227.8 ft
	30 feet above the field and t	ing player's home run basebal hat the ball is launched at an a your answer to the nearest ter	angle of 26°. When will the
A) 4.8 sec	B) 2.0 sec	C) 0.9 sec	D) 2.6 sec
14) What two angles of elevation gun if the projectile's initial	- '	each a target 14 km downrang your answers to the nearest hu	-
A) 35.92° and 144.08°	B) 0.03° and 89.97°	C) 35.92° and 54.08°	D) 71.84° and 18.16°

Answer Key Testname: LAB 8 - 14.3

- 1) B
- 2) D
- 3) B
- 4) D
- 5) B
- $6)\frac{\pi}{4}$
- 7) A 8) B
- 9) D
- 10) D
- 11) C
- 12) C
- 13) B 14) C