\documentclass{article} \usepackage{fancyhdr} \usepackage{extramarks} \usepackage{amsmath} \usepackage{amsthm} \usepackage{amsfonts} \usepackage{tikz} \usepackage[plain]{algorithm} \usepackage{algpseudocode} \usetikzlibrary{automata,positioning} % % Basic Document Settings % \topmargin=-0.45in \evensidemargin=0in \oddsidemargin=0in \textwidth=6.5in \textheight=9.0in \headsep=0.25in \linespread{1.1} \pagestyle{fancy} \lhead{\hmwkAuthorName} \chead{\hmwkClass\ (\hmwkClassInstructor\ \hmwkClassTime): \hmwkTitle} \rhead{\firstxmark} \lfoot{\lastxmark} \cfoot{\thepage} \renewcommand\headrulewidth{0.4pt} \renewcommand\footrulewidth{0.4pt} \setlength\parindent{0pt} % % Create Problem Sections % \newcommand{\enterProblemHeader}[1]{ \nobreak\extramarks{}{Problem \arabic{#1} continued on next page\ldots}\nobreak{} \nobreak\extramarks{Problem \arabic{#1} (continued)}{Problem \arabic{#1} continued on next page\ldots}\nobreak{} } \newcommand{\exitProblemHeader}[1]{ \nobreak\extramarks{Problem \arabic{#1} (continued)}{Problem \arabic{#1} continued on next page\ldots}\nobreak{} \stepcounter{#1} \nobreak\extramarks{Problem \arabic{#1}}{}\nobreak{} } \setcounter{secnumdepth}{0} \newcounter{partCounter} \newcounter{homeworkProblemCounter} \setcounter{homeworkProblemCounter}{1} \nobreak\extramarks{Problem \arabic{homeworkProblemCounter}}{}\nobreak{} % % Homework Problem Environment % % This environment takes an optional argument. When given, it will adjust the % problem counter. This is useful for when the problems given for your % assignment aren't sequential. See the last 3 problems of this template for an % example. % \newenvironment{homeworkProblem}[1][-1]{ \ifnum#1>0 \setcounter{homeworkProblemCounter}{#1} \fi \section{Problem \arabic{homeworkProblemCounter}} \setcounter{partCounter}{1} \enterProblemHeader{homeworkProblemCounter} }{ \exitProblemHeader{homeworkProblemCounter} } % % Homework Details % - Title % - Due date % - Class % - Section/Time % - Instructor % - Author % \newcommand{\hmwkTitle}{Homework\ \#2} \newcommand{\hmwkDueDate}{February 12, 2014} \newcommand{\hmwkClass}{Calculus} \newcommand{\hmwkClassTime}{Section A} \newcommand{\hmwkClassInstructor}{Professor Isaac Newton} \newcommand{\hmwkAuthorName}{\textbf{Josh Davis} \and \textbf{Davis Josh}} % % Title Page % \title{ \vspace{2in} \textmd{\textbf{\hmwkClass:\ \hmwkTitle}}\\ \normalsize\vspace{0.1in}\small{Due\ on\ \hmwkDueDate\ at 3:10pm}\\ \vspace{0.1in}\large{\textit{\hmwkClassInstructor\ \hmwkClassTime}} \vspace{3in} } \author{\hmwkAuthorName} \date{} \renewcommand{\part}[1]{\textbf{\large Part \Alph{partCounter}}\stepcounter{partCounter}\\} % % Various Helper Commands % % Useful for algorithms \newcommand{\alg}[1]{\textsc{\bfseries \footnotesize #1}} % For derivatives \newcommand{\deriv}[1]{\frac{\mathrm{d}}{\mathrm{d}x} (#1)} % For partial derivatives \newcommand{\pderiv}[2]{\frac{\partial}{\partial #1} (#2)} % Integral dx \newcommand{\dx}{\mathrm{d}x} % Alias for the Solution section header \newcommand{\solution}{\textbf{\large Solution}} % Probability commands: Expectation, Variance, Covariance, Bias \newcommand{\E}{\mathrm{E}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\Cov}{\mathrm{Cov}} \newcommand{\Bias}{\mathrm{Bias}} \begin{document} \maketitle \pagebreak \begin{homeworkProblem} Give an appropriate positive constant \(c\) such that \(f(n) \leq c \cdot g(n)\) for all \(n > 1\). \begin{enumerate} \item \(f(n) = n^2 + n + 1\), \(g(n) = 2n^3\) \item \(f(n) = n\sqrt{n} + n^2\), \(g(n) = n^2\) \item \(f(n) = n^2 - n + 1\), \(g(n) = n^2 / 2\) \end{enumerate} \textbf{Solution} We solve each solution algebraically to determine a possible constant \(c\). \\ \textbf{Part One} \[ \begin{split} n^2 + n + 1 &= \\ &\leq n^2 + n^2 + n^2 \\ &= 3n^2 \\ &\leq c \cdot 2n^3 \end{split} \] Thus a valid \(c\) could be when \(c = 2\). \\ \textbf{Part Two} \[ \begin{split} n^2 + n\sqrt{n} &= \\ &= n^2 + n^{3/2} \\ &\leq n^2 + n^{4/2} \\ &= n^2 + n^2 \\ &= 2n^2 \\ &\leq c \cdot n^2 \end{split} \] Thus a valid \(c\) is \(c = 2\). \\ \textbf{Part Three} \[ \begin{split} n^2 - n + 1 &= \\ &\leq n^2 \\ &\leq c \cdot n^2/2 \end{split} \] Thus a valid \(c\) is \(c = 2\). \end{homeworkProblem} \pagebreak \begin{homeworkProblem} Let \(\Sigma = \{0, 1\}\). Construct a DFA \(A\) that recognizes the language that consists of all binary numbers that can be divided by 5. \\ Let the state \(q_k\) indicate the remainder of \(k\) divided by 5. For example, the remainder of 2 would correlate to state \(q_2\) because \(7 \mod 5 = 2\). \begin{figure}[h] \centering \begin{tikzpicture}[shorten >=1pt,node distance=2cm,on grid,auto] \node[state, accepting, initial] (q_0) {$q_0$}; \node[state] (q_1) [right=of q_0] {$q_1$}; \node[state] (q_2) [right=of q_1] {$q_2$}; \node[state] (q_3) [right=of q_2] {$q_3$}; \node[state] (q_4) [right=of q_3] {$q_4$}; \path[->] (q_0) edge [loop above] node {0} (q_0) edge node {1} (q_1) (q_1) edge node {0} (q_2) edge [bend right=-30] node {1} (q_3) (q_2) edge [bend left] node {1} (q_0) edge [bend right=-30] node {0} (q_4) (q_3) edge node {1} (q_2) edge [bend left] node {0} (q_1) (q_4) edge node {0} (q_3) edge [loop below] node {1} (q_4); \end{tikzpicture} \caption{DFA, \(A\), this is really beautiful, ya know?} \label{fig:multiple5} \end{figure} \textbf{Justification} \\ Take a given binary number, \(x\). Since there are only two inputs to our state machine, \(x\) can either become \(x0\) or \(x1\). When a 0 comes into the state machine, it is the same as taking the binary number and multiplying it by two. When a 1 comes into the machine, it is the same as multipying by two and adding one. \\ Using this knowledge, we can construct a transition table that tell us where to go: \begin{table}[ht] \centering \begin{tabular}{c || c | c | c | c | c} & \(x \mod 5 = 0\) & \(x \mod 5 = 1\) & \(x \mod 5 = 2\) & \(x \mod 5 = 3\) & \(x \mod 5 = 4\) \\ \hline \(x0\) & 0 & 2 & 4 & 1 & 3 \\ \(x1\) & 1 & 3 & 0 & 2 & 4 \\ \end{tabular} \end{table} Therefore on state \(q_0\) or (\(x \mod 5 = 0\)), a transition line should go to state \(q_0\) for the input 0 and a line should go to state \(q_1\) for input 1. Continuing this gives us the Figure~\ref{fig:multiple5}. \end{homeworkProblem} \begin{homeworkProblem} Write part of \alg{Quick-Sort($list, start, end$)} \begin{algorithm}[] \begin{algorithmic}[1] \Function{Quick-Sort}{$list, start, end$} \If{$start \geq end$} \State{} \Return{} \EndIf{} \State{} $mid \gets \Call{Partition}{list, start, end}$ \State{} \Call{Quick-Sort}{$list, start, mid - 1$} \State{} \Call{Quick-Sort}{$list, mid + 1, end$} \EndFunction{} \end{algorithmic} \caption{Start of QuickSort} \end{algorithm} \end{homeworkProblem} \pagebreak \begin{homeworkProblem} Suppose we would like to fit a straight line through the origin, i.e., \(Y_i = \beta_1 x_i + e_i\) with \(i = 1, \ldots, n\), \(\E [e_i] = 0\), and \(\Var [e_i] = \sigma^2_e\) and \(\Cov[e_i, e_j] = 0, \forall i \neq j\). \\ \part Find the least squares esimator for \(\hat{\beta_1}\) for the slope \(\beta_1\). \\ \solution To find the least squares estimator, we should minimize our Residual Sum of Squares, RSS: \[ \begin{split} RSS &= \sum_{i = 1}^{n} {(Y_i - \hat{Y_i})}^2 \\ &= \sum_{i = 1}^{n} {(Y_i - \hat{\beta_1} x_i)}^2 \end{split} \] By taking the partial derivative in respect to \(\hat{\beta_1}\), we get: \[ \pderiv{ \hat{\beta_1} }{RSS} = -2 \sum_{i = 1}^{n} {x_i (Y_i - \hat{\beta_1} x_i)} = 0 \] This gives us: \[ \begin{split} \sum_{i = 1}^{n} {x_i (Y_i - \hat{\beta_1} x_i)} &= \sum_{i = 1}^{n} {x_i Y_i} - \sum_{i = 1}^{n} \hat{\beta_1} x_i^2 \\ &= \sum_{i = 1}^{n} {x_i Y_i} - \hat{\beta_1}\sum_{i = 1}^{n} x_i^2 \end{split} \] Solving for \(\hat{\beta_1}\) gives the final estimator for \(\beta_1\): \[ \begin{split} \hat{\beta_1} &= \frac{ \sum {x_i Y_i} }{ \sum x_i^2 } \end{split} \] \pagebreak \part Calculate the bias and the variance for the estimated slope \(\hat{\beta_1}\). \\ \solution For the bias, we need to calculate the expected value \(\E[\hat{\beta_1}]\): \[ \begin{split} \E[\hat{\beta_1}] &= \E \left[ \frac{ \sum {x_i Y_i} }{ \sum x_i^2 }\right] \\ &= \frac{ \sum {x_i \E[Y_i]} }{ \sum x_i^2 } \\ &= \frac{ \sum {x_i (\beta_1 x_i)} }{ \sum x_i^2 } \\ &= \frac{ \sum {x_i^2 \beta_1} }{ \sum x_i^2 } \\ &= \beta_1 \frac{ \sum {x_i^2 \beta_1} }{ \sum x_i^2 } \\ &= \beta_1 \end{split} \] Thus since our estimator's expected value is \(\beta_1\), we can conclude that the bias of our estimator is 0. \\ For the variance: \[ \begin{split} \Var[\hat{\beta_1}] &= \Var \left[ \frac{ \sum {x_i Y_i} }{ \sum x_i^2 }\right] \\ &= \frac{ \sum {x_i^2} }{ \sum x_i^2 \sum x_i^2 } \Var[Y_i] \\ &= \frac{ \sum {x_i^2} }{ \sum x_i^2 \sum x_i^2 } \Var[Y_i] \\ &= \frac{ 1 }{ \sum x_i^2 } \Var[Y_i] \\ &= \frac{ 1 }{ \sum x_i^2 } \sigma^2 \\ &= \frac{ \sigma^2 }{ \sum x_i^2 } \end{split} \] \end{homeworkProblem} \pagebreak \begin{homeworkProblem} Prove a polynomial of degree \(k\), \(a_kn^k + a_{k - 1}n^{k - 1} + \hdots + a_1n^1 + a_0n^0\) is a member of \(\Theta(n^k)\) where \(a_k \hdots a_0\) are nonnegative constants. \begin{proof} To prove that \(a_kn^k + a_{k - 1}n^{k - 1} + \hdots + a_1n^1 + a_0n^0\), we must show the following: \[ \exists c_1 \exists c_2 \forall n \geq n_0,\ {c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)} \] For the first inequality, it is easy to see that it holds because no matter what the constants are, \(n^k \leq a_kn^k + a_{k - 1}n^{k - 1} + \hdots + a_1n^1 + a_0n^0\) even if \(c_1 = 1\) and \(n_0 = 1\). This is because \(n^k \leq c_1 \cdot a_kn^k\) for any nonnegative constant, \(c_1\) and \(a_k\). \\ Taking the second inequality, we prove it in the following way. By summation, \(\sum\limits_{i=0}^k a_i\) will give us a new constant, \(A\). By taking this value of \(A\), we can then do the following: \[ \begin{split} a_kn^k + a_{k - 1}n^{k - 1} + \hdots + a_1n^1 + a_0n^0 &= \\ &\leq (a_k + a_{k - 1} \hdots a_1 + a_0) \cdot n^k \\ &= A \cdot n^k \\ &\leq c_2 \cdot n^k \end{split} \] where \(n_0 = 1\) and \(c_2 = A\). \(c_2\) is just a constant. Thus the proof is complete. \end{proof} \end{homeworkProblem} \pagebreak % % Non sequential homework problems % % Jump to problem 18 \begin{homeworkProblem}[18] Evaluate \(\sum_{k=1}^{5} k^2\) and \(\sum_{k=1}^{5} (k - 1)^2\). \end{homeworkProblem} % Continue counting to 19 \begin{homeworkProblem} Find the derivative of \(f(x) = x^4 + 3x^2 - 2\) \end{homeworkProblem} % Go back to where we left off \begin{homeworkProblem}[6] Evaluate the integrals \(\int_0^1 (1 - x^2) \dx\) and \(\int_1^{\infty} \frac{1}{x^2} \dx\). \end{homeworkProblem} \end{document}