# Parametric Surface Plotter This project provides a simple way to **define and plot parametric 3D surfaces** (or curves) using Python. * A **surface** is defined with **two parameters**: $$ x = x(t, u), \quad y = y(t, u), \quad z = z(t, u) $$ * A **curve** is defined with a **single parameter**: $$ x = x(t), \quad y = y(t), \quad z = z(t) $$ The script will: * Generate a mesh of points (for surfaces) or a set of points (for curves) * Plot the result in 3D with Matplotlib * Save the plot as a high-definition `.svg` file, named after the parent directory of the script --- ## Requirements Install dependencies: ```bash pip install -r requirements.txt ``` --- ## Usage Run the script: ```bash python plot_surface.py ``` A window with the 3D plot will open, and an `.svg` will be saved in the same directory. --- ## Defining Your Own Geometry ### 1. Surfaces (two parameters: t, u) Surfaces require two parameters because they are 2D objects. You define three functions in `plot_surface.py`: ```python def x_func(t, u): return ... def y_func(t, u): return ... def z_func(t, u): return ... ``` Examples: * **Cone** $$ x = 4t\cos(u), \quad y = 4t\sin(u), \quad z = 10t $$ ```python def x_func(t, u): return 4 * t * np.cos(u) def y_func(t, u): return 4 * t * np.sin(u) def z_func(t, u): return 10 * t ``` * **Sphere** (radius 1) $$ x = \cos(u)\sin(t), \quad y = \sin(u)\sin(t), \quad z = \cos(t) $$ ```python def x_func(t, u): return np.cos(u) * np.sin(t) def y_func(t, u): return np.sin(u) * np.sin(t) def z_func(t, u): return np.cos(t) ``` You can adjust parameter ranges in `generate_mesh()`: ```python def generate_mesh(t_range=(0, 5), u_range=(0, 2*np.pi), n_t=50, n_u=100): ... ``` * Sphere → `t_range=(0, np.pi)`, `u_range=(0, 2*np.pi)` * Cone → `t_range=(0, 5)`, `u_range=(0, 2*np.pi)` --- ### 2. Curves (one parameter: t) If your object is not a surface but a **curve**, you only need one parameter $t$. Example: **Helix** $$ x = \cos(t), \quad y = \sin(t), \quad z = t $$ ```python def x_func(t): return np.cos(t) def y_func(t): return np.sin(t) def z_func(t): return t ``` Here you don’t need `u` at all. The code can be simplified to generate a 1D array of points and plot them as a line in 3D. --- ## Which Should I Use? * **Two parameters (t, u):** Use this for **surfaces** (sphere, torus, cone, paraboloid, etc.). * **One parameter (t):** Use this for **curves** (helix, circle, line, parametric trajectory). 👉 A quick rule: * If your equation is like $z = f(x, y)$, or implicit in 3 variables, you usually need **two parameters**. * If your equation is like $x = f(t), y = g(t), z = h(t)$, then **one parameter** is enough. --- ## Notes * Always use `numpy` functions (`np.sin`, `np.cos`, etc.), not Python’s built-ins, since the parameters are arrays. * Some surfaces (like cones, hyperboloids) have two branches; you can add an additional `z_func_neg` if needed. * The SVG is automatically named after the script’s parent directory. --- ✅ With this, you can parametrize and visualize **both surfaces (2D)** and **curves (1D)** by editing only a few functions.