First Name_____ Last Name _____

Lab 5

Find both the parametric and the vector equation of the line.

1) The line through (0, 1, 0) in the direction of the vector $\mathbf{v} = \langle 3, 0, -1 \rangle$

A)
$$x = 3t, y = 1, z = -t; r = \langle 3, 0, -1 \rangle + t \langle 0, 1, 0 \rangle$$

B)
$$x = 3$$
, $y = t$, $z = -1$; $r = \langle 3, 0, -1 \rangle + t \langle 0, 1, 0 \rangle$

C)
$$x = 3t, y = 1, z = -t; r = (0, 1, 0) + t(3, 0, -1)$$

D)
$$x = 3$$
, $y = t$, $z = -1$; $r = \langle 0, 1, 0 \rangle + t \langle 3, 0, -1 \rangle$

Find parametric equations for the line described below.

2) The line through the point P(5, -1, -5) parallel to the vector -6i + 5j - 5k

A)
$$x = 6t - 5$$
, $y = 5t + 1$, $z = -5t + 5$

B)
$$x = 6t + 5$$
, $y = 5t - 1$, $z = -5t - 5$

C)
$$x = -6t + 5$$
, $y = 5t - 1$, $z = -5t - 5$

D)
$$x = -6t - 5$$
, $y = 5t + 1$, $z = -5t + 5$

Find a parametrization for the line segment beginning at P₁ and ending at P₂.

3) $P_1(-3, 7, 3)$ and $P_2(0, 7, 7)$

A)
$$x = -3t$$
, $y = 7t$, $z = -4t + 7$, $0 \le t \le 1$

B)
$$x = 3t - 3$$
, $y = 7$, $z = 4t + 3$, $0 \le t \le 1$

C)
$$x = 3t - 3$$
, $y = 7t$, $z = 4t + 3$, $0 \le t \le 1$

D)
$$x = -3t$$
, $y = 7$, $z = -4t + 7$, $0 \le t \le 1$

Find parametric equations for the line described below.

4) The line through the point P(-4, -7, 4) and perpendicular to the vectors u = 6i + 4j + 4k and v = -7i - 6j - 4k

A)
$$x = 8t + 4$$
, $y = -4t + 7$, $z = -4t - 4$

B)
$$x = 8t - 4$$
, $y = -4t - 7$, $z = -4t + 4$

C)
$$x = 8t - 4$$
, $y = 4t - 7$, $z = -8t + 4$

D)
$$x = 8t - 4$$
, $y = -4t - 7$, $z = -8t + 4$

Determine whether the pairs of lines are parallel, intersect at a single point, or are skew. If the lines are parallel, determine whether they are the same line (and thus intersect at all points). If the lines intersect at a single point, determine the point of intersection.

5)
$$x = 1 + 3t$$
, $y = 3 - 3t$, $z = -t$ and $x = 3 + 4s$, $y = -1 - 2s$, $z = 3 - 5s$

- A) The lines intersect at a single point, (-5, 1, 3).
- C) The lines are skew.

- B) The lines are parallel, distinct lines.
- D) The lines intersect at a single point, (7, -3, -2).

6)
$$r = \langle 3, 1, 4 \rangle + t \langle -1, 6, -2 \rangle$$
; $R = \langle -6, 55, -14 \rangle + t \langle 5, -30, 10 \rangle$

A) The lines are skew.

- B) The lines are the same line.
- C) The lines intersect at a single point, $(\frac{3}{2}, 10, 1)$.
- D) The lines are parallel, distinct lines.

Write the equation for the plane.

7) The plane through the point P(4, -3, 2) and normal to $n = \langle 2, 7, 6 \rangle$.

A)
$$4x - 3y + 2z = -1$$

B)
$$-4x + 3y - 2z = -$$

C)
$$2x + 7y + 6z = -1$$

A)
$$4x - 3y + 2z = -1$$
 B) $-4x + 3y - 2z = -1$ C) $2x + 7y + 6z = -1$ D) $-2x - 7y - 6z = -1$

8) The plane through the points P(-1, 8, -58), Q(2, -2, 27) and R(1, -5, 43).

A)
$$5x - 7y - z = 3$$

B)
$$5x + 7y + z = 3$$

C)
$$5x + 7y + z = -3$$

A)
$$5x - 7y - z = 3$$
 B) $5x + 7y + z = 3$ C) $5x + 7y + z = -3$ D) $5x - 7y - z = -3$

Find the line of intersection.

9)
$$-2x + 2y = -2$$
, $-2y + 5z = 4$, (Hint: use $z = 0$ to get one of the answer choices)

A)
$$x = 10t - 1$$
, $y = 10t - 2$, $z = 4$

B)
$$x = 10t + 1$$
, $y = 10t + 2$, $z = -4t$

C)
$$x = 10t - 4$$
, $y = 10t + 4$, $z = 4t$

D)
$$x = 10t - 1$$
, $y = 10t - 2$, $z = 4t$

10)
$$x + y + z = 7$$
, $x + y = 12$, (Hint: use $x = 0$ to get one of the answer choices.)

A)
$$x = -t$$
, $y = 12 + t$, $z = -5$

B)
$$x = t$$
, $y = 12 - t$, $z = -5$

C)
$$x = -t$$
, $y = 12 + t$, $z = 5$

D)
$$x = -1$$
, $y = 1 + 12t$, $z = -5t$

Answer Key Testname: LAB 5 - 13.5

- 1) C 2) C
- 3) B
- 4) D
- 5) D
- 6) B
- 7) C
- 8) D
- 9) D
- 10) A