diff --git a/labs-set-1/template.pdf b/labs-set-1/template.pdf index 1ea1c63..78d5b1f 100644 Binary files a/labs-set-1/template.pdf and b/labs-set-1/template.pdf differ diff --git a/labs-set-1/template.tex b/labs-set-1/template.tex index 0f553e3..918b904 100644 --- a/labs-set-1/template.tex +++ b/labs-set-1/template.tex @@ -111,4 +111,90 @@ \end{align*} } +\pagebreak + +\chapter{Lab 3 - 13.2} +\section{Work} +\qs{}{ + Let $P$ be the plane in question. + \begin{align*} + P = \{ (x,y,z) \in \mathbb{R}^3 : x = 1 \} + \end{align*} +} + +\qs{}{ + \begin{align*} + \mathrm{dist}(P_1,P_2) = \sqrt{(5-1)^2 + (-6+1)^2 + (-5+2)^2} = \sqrt{4^2 + 5^2 +3^2} = \sqrt{16+25+9}=\sqrt{50} = 5\sqrt{2} + \end{align*} +} + +\qs{}{ + \begin{align*} + 5^2 = (x+8)^2 + (y-10)^2+z^2 = x^2 + 8^2 + 16x +y^2 + 100 -20y +z^2 \\ + \text{This corresponds with answer choice A} + \end{align*} +} +\qs{}{ + Let $C$ be the center point of the sphere, and $r$ be the radius. + \begin{align*} + x^2+y^2+z^2-18x-10y-6z=-15 \\ + \implies x^2 - 18x + (\tfrac{18}{2})^2 + y^2 - 10y + (\tfrac{10}{2})^2 + z^2 - 6z + (\tfrac{6}{2})^2 = -15 + (\tfrac{18}{2})^2 + (\tfrac{10}{2})^2 + (\tfrac{6}{2})^2 \\ + \implies (x-9)^2 + (y-5)^2 + (z-3)^2 = -15+81+25+9=10+81+9=100=10^2 \\ + \therefore C = (9,5,3) \quad r=10 + \end{align*} +} + +\qs{}{ + The set $\{ (x,y,z) \in \mathbb{R}^3 : x^2 +y^2 +z^2 >1 \}$ can be described as the set of all real points outside of a sphere with radius one centered at the origin, non-inclusive of the boundary where $x^2+y^2+z^2=1$. This corresponds with answer choice C. +} + +\qs{}{ + \begin{align*} + \vec{v}=\vec{PQ}=Q-P \quad Q = (4,3,-3) \quad P = (-1,-3,0) \\ + \vec{v}=\langle 4+1,3+3,-3 \rangle = \langle 5,6,-3 \rangle = 5\hat{i} + 6\hat{j} -3\hat{k} \\ + \text{This corresponds with answer choice A} + \end{align*} +} + +\qs{}{ + \begin{align*} + \vec{v}=\vec{AB}=B-A \quad B = (-2,-13,-2) \quad A = (-7,-6,-5) \\ + \vec{v}=\langle -2+7,-13+6,-2+5 \rangle = \langle 5,-7,3 \rangle = 5\hat{i} - 7\hat{j} +3\hat{k} \\ + \text{This corresponds with answer choice B} + \end{align*} +} + +\qs{}{ + \begin{align*} + M \coloneqq \mathrm{midpoint}(A,B)=(\frac{3+5}{2},\frac{5+2}{2},\frac{5+4}{2})=(4,3.5,4.5) \\ + \vec{v} = M-C = \langle 4-1,3.5-1,4.5-1 \rangle = \langle 3,2.5,3.5 \rangle \\ + \text{This corresponds with answer choice B} + \end{align*} +} + +\qs{}{ + \begin{align*} + \vec{v} \coloneqq 2\vec{u}-6\vec{v} \quad \vec{u}= \langle 1,1,0 \rangle \quad \vec{v}=\langle 3,0,1 \rangle \\ + \vec{v} = \langle 2,2,0 \rangle - \langle 18,0,6 \rangle = \langle -16,2,-6 \rangle = -16\hat{i}+2\hat{j}-6\hat{k} \\ + \text{This corresponds with answer choice B} + \end{align*} +} + +\qs{}{ + The provided vector corresponds with answer choice D since: + \begin{align*} + 5\hat{i}+10\hat{j}+10\hat{k}=15( \tfrac{1}{3}\hat{i}+\tfrac{2}{3}\hat{j}+\tfrac{2}{3}\hat{k}) \\ + \implies 5\hat{i}+10\hat{j}+10\hat{k}= \tfrac{15}{3}\hat{i}+\tfrac{30}{3}\hat{j}+\tfrac{30}{3}\hat{k} \\ + \implies \cancel{ 5\hat{i}+10\hat{j}+10\hat{k}}= \cancel{5\hat{i}+10\hat{j}+10\hat{k}} \\ + \implies 0=0 + \end{align*} +} + +\qs{}{ + Let $\vec{v}=\langle -1,6,0 \rangle$ + \begin{align*} + \|\vec{v}\|=\sqrt{1^2+6^2+0^2}=\sqrt{1+36}=\sqrt{37} + \end{align*} +} + \end{document} diff --git a/labs-set-1/template.toc b/labs-set-1/template.toc index 853a91d..a5b793d 100644 --- a/labs-set-1/template.toc +++ b/labs-set-1/template.toc @@ -1,3 +1,5 @@ \contentsline {chapter}{\numberline {1}Lab 2 - 13.1 Apps}{2}{chapter.1}% \contentsline {section}{\numberline {1.1}Work}{2}{section.1.1}% +\contentsline {chapter}{\numberline {2}Lab 3 - 13.2}{5}{chapter.2}% +\contentsline {section}{\numberline {2.1}Work}{5}{section.2.1}% \contentsfinish