diff --git a/labs-set-1/template.pdf b/labs-set-1/template.pdf index 1b7e841..68d621b 100644 Binary files a/labs-set-1/template.pdf and b/labs-set-1/template.pdf differ diff --git a/labs-set-1/template.tex b/labs-set-1/template.tex index 596f88b..eb44217 100644 --- a/labs-set-1/template.tex +++ b/labs-set-1/template.tex @@ -39,6 +39,76 @@ } \qs{}{ + Let $\vec{T}$ represent the tension in the cable, and $\vec{C}$ represent the compression force experienced by the boom in neutralizing the horizontal component of $\vec{T}$. + \begin{align*} + \vec{T}\coloneqq \langle \|\vec{T}\| ; 142\degree \rangle \\ + \|\vec{T}\|\sin{142\degree} = 450 \, \mathrm{lb} \\ + \|\vec{T}\| = \frac{450 \, \mathrm{lb}}{\sin{142\degree}} \\ + \|\vec{T}\| \Rightarrow 730.921 \, \mathrm{lb} \\ + \|\vec{C}\| = |(\|\vec{T}\|\cos{142\degree})|\Rightarrow 575.973 \, \mathrm{lb} \\ + \text{ This corresponds to answer choice C} + \end{align*} } + +\qs{}{ + Let the $x'$-axis of the new coordinate system be oriented along the unit vector $\hat{u}=\hat{T_1}$: + \begin{align*} + \vec{T_1} \coloneqq \langle 3600,0 \rangle \\ + \vec{T_2} \coloneqq \langle 1800;45\degree \rangle \\ + \|\vec{T_1}+\vec{T_2}\| = \langle 3600+1800\cos{45\degree},1800\sin{45\degree} \rangle = \langle 3600+1800\tfrac{\sqrt{2}}{2},1800\tfrac{\sqrt{2}}{2} \rangle \\ + \|\vec{T_1}+\vec{T_2}\| \Rightarrow 5036.278 \, \mathrm{lb} \\ + \text{This corresponds with answer choice D} + \end{align*} +} + + +\qs{}{ + Let the force vector be $\vec{F}$. + + \begin{align*} + \vec{F} \coloneqq 8\cdot\cos{30\degree}\hat i + 8\cdot\sin{30\degree}\hat j = 8\cdot\tfrac{\sqrt{3}}{2}\hat i + 8\cdot\tfrac{1}{2}\hat j = 4\cdot\sqrt{3} \hat i + 4 \hat j\\ + \text{This corresponds with answer choice A} + \end{align*} +} + +\qs{}{ + Let the velocity vector be $\vec{v_0}$. + + \begin{align*} + \vec{v_0} \coloneqq 5\cdot\cos{56\degree}\hat i + 5\cdot\sin{56\degree}\hat j = 2.795 \hat i + 4.145 \hat j\\ + \text{This corresponds with answer choice A} + \end{align*} +} + +\qs{}{ + Let the velocity vector be $\vec{v_0}$. + + \begin{align*} + \vec{v_0} \coloneqq \langle 817 ; 140\degree \rangle = \langle 817\cos{140\degree},817\sin{140\degree} \rangle \Rightarrow \langle -625.858,525.157 \rangle \\ + \text{This corresponds with answer choice A} + \end{align*} +} + +\qs{}{ + Let the wind's parameters be encoded in the vector $\vec{W}$. + + \begin{align*} + \vec{W}\coloneqq\langle 5,14 \rangle \\ + \implies \theta = \arctan{\tfrac{14}{5}} \Rightarrow 70.346 \degree \\ + \text{This corresponds with answer choice C} + \end{align*} +} +\pagebreak +\qs{}{ + Let the boat's target velocity vector be $\vec{v}$. + + \begin{align*} + \vec{v}\coloneqq \langle 0,31 \rangle - \langle -6,0 \rangle \\ + \vec{v} = \langle 6,31 \rangle \\ + \implies \theta = \arctan{\tfrac{31}{6}} \Rightarrow 79.04593\degree \\ + \text{This corresponds with answer choice C, when expressed as a bearing East of North} + \end{align*} +} + \end{document}