Files
email-tracker/external/duckdb/tools/sqlite3_api_wrapper/sqlite3/printf.c
2025-10-24 19:21:19 -05:00

1155 lines
32 KiB
C

#include "stripped_sqlite_int.h"
struct StrAccum {
void *db; /* Optional database for lookaside. Can be NULL */
char *zText; /* The string collected so far */
u32 nAlloc; /* Amount of space allocated in zText */
u32 mxAlloc; /* Maximum allowed allocation. 0 for no malloc usage */
u32 nChar; /* Length of the string so far */
u8 accError; /* STRACCUM_NOMEM or STRACCUM_TOOBIG */
u8 printfFlags; /* SQLITE_PRINTF flags below */
};
#define STRACCUM_NOMEM 1
#define STRACCUM_TOOBIG 2
#define SQLITE_PRINTF_INTERNAL 0x01 /* Internal-use-only converters allowed */
#define SQLITE_PRINTF_SQLFUNC 0x02 /* SQL function arguments to VXPrintf */
#define SQLITE_PRINTF_MALLOCED 0x04 /* True if xText is allocated space */
#define isMalloced(X) (((X)->printfFlags & SQLITE_PRINTF_MALLOCED) != 0)
typedef struct StrAccum StrAccum;
void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N);
void sqlite3AppendChar(StrAccum *p, int N, char c);
void sqlite3StrAccumAppendAll(StrAccum *p, const char *z);
void sqlite3StrAccumReset(StrAccum *p);
/*
** The "printf" code that follows dates from the 1980's. It is in
** the public domain.
**
**************************************************************************
**
** This file contains code for a set of "printf"-like routines. These
** routines format strings much like the printf() from the standard C
** library, though the implementation here has enhancements to support
** SQLite.
*/
//#include "sqliteInt.h"
/*
** Conversion types fall into various categories as defined by the
** following enumeration.
*/
#define etRADIX 0 /* non-decimal integer types. %x %o */
#define etFLOAT 1 /* Floating point. %f */
#define etEXP 2 /* Exponentional notation. %e and %E */
#define etGENERIC 3 /* Floating or exponential, depending on exponent. %g */
#define etSIZE 4 /* Return number of characters processed so far. %n */
#define etSTRING 5 /* Strings. %s */
#define etDYNSTRING 6 /* Dynamically allocated strings. %z */
#define etPERCENT 7 /* Percent symbol. %% */
#define etCHARX 8 /* Characters. %c */
/* The rest are extensions, not normally found in printf() */
#define etSQLESCAPE 9 /* Strings with '\'' doubled. %q */
#define etSQLESCAPE2 \
10 /* Strings with '\'' doubled and enclosed in '', \
NULL pointers replaced by SQL NULL. %Q */
#define etTOKEN 11 /* a pointer to a Token structure */
#define etSRCLIST 12 /* a pointer to a SrcList */
#define etPOINTER 13 /* The %p conversion */
#define etSQLESCAPE3 14 /* %w -> Strings with '\"' doubled */
#define etORDINAL 15 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */
#define etDECIMAL 16 /* %d or %u, but not %x, %o */
#define etINVALID 17 /* Any unrecognized conversion type */
/*
** An "etByte" is an 8-bit unsigned value.
*/
typedef unsigned char etByte;
/*
** Each builtin conversion character (ex: the 'd' in "%d") is described
** by an instance of the following structure
*/
typedef struct et_info { /* Information about each format field */
char fmttype; /* The format field code letter */
etByte base; /* The base for radix conversion */
etByte flags; /* One or more of FLAG_ constants below */
etByte type; /* Conversion paradigm */
etByte charset; /* Offset into aDigits[] of the digits string */
etByte prefix; /* Offset into aPrefix[] of the prefix string */
} et_info;
/*
** Allowed values for et_info.flags
*/
#define FLAG_SIGNED 1 /* True if the value to convert is signed */
#define FLAG_STRING 4 /* Allow infinite precision */
/*
** The following table is searched linearly, so it is good to put the
** most frequently used conversion types first.
*/
static const char aDigits[] = "0123456789ABCDEF0123456789abcdef";
static const char aPrefix[] = "-x0\000X0";
static const et_info fmtinfo[] = {
{'d', 10, 1, etDECIMAL, 0, 0},
{'s', 0, 4, etSTRING, 0, 0},
{'g', 0, 1, etGENERIC, 30, 0},
{'z', 0, 4, etDYNSTRING, 0, 0},
{'q', 0, 4, etSQLESCAPE, 0, 0},
{'Q', 0, 4, etSQLESCAPE2, 0, 0},
{'w', 0, 4, etSQLESCAPE3, 0, 0},
{'c', 0, 0, etCHARX, 0, 0},
{'o', 8, 0, etRADIX, 0, 2},
{'u', 10, 0, etDECIMAL, 0, 0},
{'x', 16, 0, etRADIX, 16, 1},
{'X', 16, 0, etRADIX, 0, 4},
#ifndef SQLITE_OMIT_FLOATING_POINT
{'f', 0, 1, etFLOAT, 0, 0},
{'e', 0, 1, etEXP, 30, 0},
{'E', 0, 1, etEXP, 14, 0},
{'G', 0, 1, etGENERIC, 14, 0},
#endif
{'i', 10, 1, etDECIMAL, 0, 0},
{'n', 0, 0, etSIZE, 0, 0},
{'%', 0, 0, etPERCENT, 0, 0},
{'p', 16, 0, etPOINTER, 0, 1},
/* All the rest are undocumented and are for internal use only */
{'T', 0, 0, etTOKEN, 0, 0},
{'S', 0, 0, etSRCLIST, 0, 0},
{'r', 10, 1, etORDINAL, 0, 0},
};
/*
** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point
** conversions will work.
*/
#ifndef SQLITE_OMIT_FLOATING_POINT
/*
** "*val" is a double such that 0.1 <= *val < 10.0
** Return the ascii code for the leading digit of *val, then
** multiply "*val" by 10.0 to renormalize.
**
** Example:
** input: *val = 3.14159
** output: *val = 1.4159 function return = '3'
**
** The counter *cnt is incremented each time. After counter exceeds
** 16 (the number of significant digits in a 64-bit float) '0' is
** always returned.
*/
static char et_getdigit(LONGDOUBLE_TYPE *val, int *cnt) {
int digit;
LONGDOUBLE_TYPE d;
if ((*cnt) <= 0)
return '0';
(*cnt)--;
digit = (int)*val;
d = digit;
digit += '0';
*val = (*val - d) * 10.0;
return (char)digit;
}
#endif /* SQLITE_OMIT_FLOATING_POINT */
/*
** Set the StrAccum object to an error mode.
*/
static void setStrAccumError(StrAccum *p, u8 eError) {
assert(eError == STRACCUM_NOMEM || eError == STRACCUM_TOOBIG);
p->accError = eError;
p->nAlloc = 0;
}
/*
** On machines with a small stack size, you can redefine the
** SQLITE_PRINT_BUF_SIZE to be something smaller, if desired.
*/
#ifndef SQLITE_PRINT_BUF_SIZE
#define SQLITE_PRINT_BUF_SIZE 70
#endif
#define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */
/*
** Render a string given by "fmt" into the StrAccum object.
*/
void sqlite3VXPrintf(StrAccum *pAccum, /* Accumulate results here */
const char *fmt, /* Format string */
va_list ap /* arguments */
) {
int c; /* Next character in the format string */
char *bufpt; /* Pointer to the conversion buffer */
int precision; /* Precision of the current field */
int length; /* Length of the field */
int idx; /* A general purpose loop counter */
int width; /* Width of the current field */
etByte flag_leftjustify; /* True if "-" flag is present */
etByte flag_prefix; /* '+' or ' ' or 0 for prefix */
etByte flag_alternateform; /* True if "#" flag is present */
etByte flag_altform2; /* True if "!" flag is present */
etByte flag_zeropad; /* True if field width constant starts with zero */
etByte flag_long; /* 1 for the "l" flag, 2 for "ll", 0 by default */
etByte done; /* Loop termination flag */
etByte cThousand; /* Thousands separator for %d and %u */
etByte xtype = etINVALID; /* Conversion paradigm */
u8 bArgList; /* True for SQLITE_PRINTF_SQLFUNC */
char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */
sqlite_uint64 longvalue; /* Value for integer types */
LONGDOUBLE_TYPE realvalue; /* Value for real types */
const et_info *infop; /* Pointer to the appropriate info structure */
char *zOut; /* Rendering buffer */
int nOut; /* Size of the rendering buffer */
char *zExtra = 0; /* Malloced memory used by some conversion */
#ifndef SQLITE_OMIT_FLOATING_POINT
int exp, e2; /* exponent of real numbers */
int nsd; /* Number of significant digits returned */
double rounder; /* Used for rounding floating point values */
etByte flag_dp; /* True if decimal point should be shown */
etByte flag_rtz; /* True if trailing zeros should be removed */
#endif
// void *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */
char buf[etBUFSIZE]; /* Conversion buffer */
/* pAccum never starts out with an empty buffer that was obtained from
** malloc(). This precondition is required by the mprintf("%z...")
** optimization. */
assert(pAccum->nChar > 0 || (pAccum->printfFlags & SQLITE_PRINTF_MALLOCED) == 0);
bufpt = 0;
if ((pAccum->printfFlags & SQLITE_PRINTF_SQLFUNC) != 0) {
// pArgList = va_arg(ap, PrintfArguments*);
// bArgList = 1;
assert(0);
} else {
bArgList = 0;
}
for (; (c = (*fmt)) != 0; ++fmt) {
if (c != '%') {
bufpt = (char *)fmt;
#if HAVE_STRCHRNUL
fmt = strchrnul(fmt, '%');
#else
do {
fmt++;
} while (*fmt && *fmt != '%');
#endif
sqlite3StrAccumAppend(pAccum, bufpt, (int)(fmt - bufpt));
if (*fmt == 0)
break;
}
if ((c = (*++fmt)) == 0) {
sqlite3StrAccumAppend(pAccum, "%", 1);
break;
}
/* Find out what flags are present */
flag_leftjustify = flag_prefix = cThousand = flag_alternateform = flag_altform2 = flag_zeropad = 0;
done = 0;
do {
switch (c) {
case '-':
flag_leftjustify = 1;
break;
case '+':
flag_prefix = '+';
break;
case ' ':
flag_prefix = ' ';
break;
case '#':
flag_alternateform = 1;
break;
case '!':
flag_altform2 = 1;
break;
case '0':
flag_zeropad = 1;
break;
case ',':
cThousand = ',';
break;
default:
done = 1;
break;
}
} while (!done && (c = (*++fmt)) != 0);
/* Get the field width */
if (c == '*') {
if (bArgList) {
assert(0);
// width = (int)getIntArg(pArgList);
} else {
width = va_arg(ap, int);
}
if (width < 0) {
flag_leftjustify = 1;
width = width >= -2147483647 ? -width : 0;
}
c = *++fmt;
} else {
unsigned wx = 0;
while (c >= '0' && c <= '9') {
wx = wx * 10 + c - '0';
c = *++fmt;
}
// testcase( wx>0x7fffffff );
width = wx & 0x7fffffff;
}
assert(width >= 0);
#ifdef SQLITE_PRINTF_PRECISION_LIMIT
if (width > SQLITE_PRINTF_PRECISION_LIMIT) {
width = SQLITE_PRINTF_PRECISION_LIMIT;
}
#endif
/* Get the precision */
if (c == '.') {
c = *++fmt;
if (c == '*') {
if (bArgList) {
assert(0);
// precision = (int)getIntArg(pArgList);
} else {
precision = va_arg(ap, int);
}
c = *++fmt;
if (precision < 0) {
precision = precision >= -2147483647 ? -precision : -1;
}
} else {
unsigned px = 0;
while (c >= '0' && c <= '9') {
px = px * 10 + c - '0';
c = *++fmt;
}
// testcase( px>0x7fffffff );
precision = px & 0x7fffffff;
}
} else {
precision = -1;
}
assert(precision >= (-1));
#ifdef SQLITE_PRINTF_PRECISION_LIMIT
if (precision > SQLITE_PRINTF_PRECISION_LIMIT) {
precision = SQLITE_PRINTF_PRECISION_LIMIT;
}
#endif
/* Get the conversion type modifier */
if (c == 'l') {
flag_long = 1;
c = *++fmt;
if (c == 'l') {
flag_long = 2;
c = *++fmt;
}
} else {
flag_long = 0;
}
/* Fetch the info entry for the field */
infop = &fmtinfo[0];
xtype = etINVALID;
for (idx = 0; idx < ArraySize(fmtinfo); idx++) {
if (c == fmtinfo[idx].fmttype) {
infop = &fmtinfo[idx];
xtype = infop->type;
break;
}
}
/*
** At this point, variables are initialized as follows:
**
** flag_alternateform TRUE if a '#' is present.
** flag_altform2 TRUE if a '!' is present.
** flag_prefix '+' or ' ' or zero
** flag_leftjustify TRUE if a '-' is present or if the
** field width was negative.
** flag_zeropad TRUE if the width began with 0.
** flag_long 1 for "l", 2 for "ll"
** width The specified field width. This is
** always non-negative. Zero is the default.
** precision The specified precision. The default
** is -1.
** xtype The class of the conversion.
** infop Pointer to the appropriate info struct.
*/
switch (xtype) {
case etPOINTER:
flag_long = sizeof(char *) == sizeof(i64) ? 2 : sizeof(char *) == sizeof(long int) ? 1 : 0;
/* Fall through into the next case */
case etORDINAL:
case etRADIX:
cThousand = 0;
/* Fall through into the next case */
case etDECIMAL:
if (infop->flags & FLAG_SIGNED) {
i64 v;
if (bArgList) {
// v = getIntArg(pArgList);
assert(0);
} else if (flag_long) {
if (flag_long == 2) {
v = va_arg(ap, i64);
} else {
v = va_arg(ap, long int);
}
} else {
v = va_arg(ap, int);
}
if (v < 0) {
if (v == SMALLEST_INT64) {
longvalue = ((u64)1) << 63;
} else {
longvalue = -v;
}
prefix = '-';
} else {
longvalue = v;
prefix = flag_prefix;
}
} else {
if (bArgList) {
assert(0);
// longvalue = (u64)getIntArg(pArgList);
} else if (flag_long) {
if (flag_long == 2) {
longvalue = va_arg(ap, u64);
} else {
longvalue = va_arg(ap, unsigned long int);
}
} else {
longvalue = va_arg(ap, unsigned int);
}
prefix = 0;
}
if (longvalue == 0)
flag_alternateform = 0;
if (flag_zeropad && precision < width - (prefix != 0)) {
precision = width - (prefix != 0);
}
if (precision < etBUFSIZE - 10 - etBUFSIZE / 3) {
nOut = etBUFSIZE;
zOut = buf;
} else {
u64 n = (u64)precision + 10 + precision / 3;
zOut = zExtra = sqlite3Malloc(n);
if (zOut == 0) {
setStrAccumError(pAccum, STRACCUM_NOMEM);
return;
}
nOut = (int)n;
}
bufpt = &zOut[nOut - 1];
if (xtype == etORDINAL) {
static const char zOrd[] = "thstndrd";
int x = (int)(longvalue % 10);
if (x >= 4 || (longvalue / 10) % 10 == 1) {
x = 0;
}
*(--bufpt) = zOrd[x * 2 + 1];
*(--bufpt) = zOrd[x * 2];
}
{
const char *cset = &aDigits[infop->charset];
u8 base = infop->base;
do { /* Convert to ascii */
*(--bufpt) = cset[longvalue % base];
longvalue = longvalue / base;
} while (longvalue > 0);
}
length = (int)(&zOut[nOut - 1] - bufpt);
while (precision > length) {
*(--bufpt) = '0'; /* Zero pad */
length++;
}
if (cThousand) {
int nn = (length - 1) / 3; /* Number of "," to insert */
int ix = (length - 1) % 3 + 1;
bufpt -= nn;
for (idx = 0; nn > 0; idx++) {
bufpt[idx] = bufpt[idx + nn];
ix--;
if (ix == 0) {
bufpt[++idx] = cThousand;
nn--;
ix = 3;
}
}
}
if (prefix)
*(--bufpt) = prefix; /* Add sign */
if (flag_alternateform && infop->prefix) { /* Add "0" or "0x" */
const char *pre;
char x;
pre = &aPrefix[infop->prefix];
for (; (x = (*pre)) != 0; pre++)
*(--bufpt) = x;
}
length = (int)(&zOut[nOut - 1] - bufpt);
break;
case etFLOAT:
case etEXP:
case etGENERIC:
if (bArgList) {
assert(0);
// realvalue = getDoubleArg(pArgList);
} else {
realvalue = va_arg(ap, double);
}
#ifdef SQLITE_OMIT_FLOATING_POINT
length = 0;
#else
if (precision < 0)
precision = 6; /* Set default precision */
if (realvalue < 0.0) {
realvalue = -realvalue;
prefix = '-';
} else {
prefix = flag_prefix;
}
if (xtype == etGENERIC && precision > 0)
precision--;
// testcase( precision>0xfff );
for (idx = precision & 0xfff, rounder = 0.5; idx > 0; idx--, rounder *= 0.1) {
}
if (xtype == etFLOAT)
realvalue += rounder;
/* Normalize realvalue to within 10.0 > realvalue >= 1.0 */
exp = 0;
if (sqlite3IsNaN((double)realvalue)) {
bufpt = "NaN";
length = 3;
break;
}
if (realvalue > 0.0) {
LONGDOUBLE_TYPE scale = 1.0;
while (realvalue >= 1e100 * scale && exp <= 350) {
scale *= 1e100;
exp += 100;
}
while (realvalue >= 1e10 * scale && exp <= 350) {
scale *= 1e10;
exp += 10;
}
while (realvalue >= 10.0 * scale && exp <= 350) {
scale *= 10.0;
exp++;
}
realvalue /= scale;
while (realvalue < 1e-8) {
realvalue *= 1e8;
exp -= 8;
}
while (realvalue < 1.0) {
realvalue *= 10.0;
exp--;
}
if (exp > 350) {
bufpt = buf;
buf[0] = prefix;
memcpy(buf + (prefix != 0), "Inf", 4);
length = 3 + (prefix != 0);
break;
}
}
bufpt = buf;
/*
** If the field type is etGENERIC, then convert to either etEXP
** or etFLOAT, as appropriate.
*/
if (xtype != etFLOAT) {
realvalue += rounder;
if (realvalue >= 10.0) {
realvalue *= 0.1;
exp++;
}
}
if (xtype == etGENERIC) {
flag_rtz = !flag_alternateform;
if (exp < -4 || exp > precision) {
xtype = etEXP;
} else {
precision = precision - exp;
xtype = etFLOAT;
}
} else {
flag_rtz = flag_altform2;
}
if (xtype == etEXP) {
e2 = 0;
} else {
e2 = exp;
}
if (MAX(e2, 0) + (i64)precision + (i64)width > etBUFSIZE - 15) {
bufpt = zExtra = sqlite3Malloc(MAX(e2, 0) + (i64)precision + (i64)width + 15);
if (bufpt == 0) {
setStrAccumError(pAccum, STRACCUM_NOMEM);
return;
}
}
zOut = bufpt;
nsd = 16 + flag_altform2 * 10;
flag_dp = (precision > 0 ? 1 : 0) | flag_alternateform | flag_altform2;
/* The sign in front of the number */
if (prefix) {
*(bufpt++) = prefix;
}
/* Digits prior to the decimal point */
if (e2 < 0) {
*(bufpt++) = '0';
} else {
for (; e2 >= 0; e2--) {
*(bufpt++) = et_getdigit(&realvalue, &nsd);
}
}
/* The decimal point */
if (flag_dp) {
*(bufpt++) = '.';
}
/* "0" digits after the decimal point but before the first
** significant digit of the number */
for (e2++; e2 < 0; precision--, e2++) {
assert(precision > 0);
*(bufpt++) = '0';
}
/* Significant digits after the decimal point */
while ((precision--) > 0) {
*(bufpt++) = et_getdigit(&realvalue, &nsd);
}
/* Remove trailing zeros and the "." if no digits follow the "." */
if (flag_rtz && flag_dp) {
while (bufpt[-1] == '0')
*(--bufpt) = 0;
assert(bufpt > zOut);
if (bufpt[-1] == '.') {
if (flag_altform2) {
*(bufpt++) = '0';
} else {
*(--bufpt) = 0;
}
}
}
/* Add the "eNNN" suffix */
if (xtype == etEXP) {
*(bufpt++) = aDigits[infop->charset];
if (exp < 0) {
*(bufpt++) = '-';
exp = -exp;
} else {
*(bufpt++) = '+';
}
if (exp >= 100) {
*(bufpt++) = (char)((exp / 100) + '0'); /* 100's digit */
exp %= 100;
}
*(bufpt++) = (char)(exp / 10 + '0'); /* 10's digit */
*(bufpt++) = (char)(exp % 10 + '0'); /* 1's digit */
}
*bufpt = 0;
/* The converted number is in buf[] and zero terminated. Output it.
** Note that the number is in the usual order, not reversed as with
** integer conversions. */
length = (int)(bufpt - zOut);
bufpt = zOut;
/* Special case: Add leading zeros if the flag_zeropad flag is
** set and we are not left justified */
if (flag_zeropad && !flag_leftjustify && length < width) {
int i;
int nPad = width - length;
for (i = width; i >= nPad; i--) {
bufpt[i] = bufpt[i - nPad];
}
i = prefix != 0;
while (nPad--)
bufpt[i++] = '0';
length = width;
}
#endif /* !defined(SQLITE_OMIT_FLOATING_POINT) */
break;
case etSIZE:
if (!bArgList) {
*(va_arg(ap, int *)) = pAccum->nChar;
}
length = width = 0;
break;
case etPERCENT:
buf[0] = '%';
bufpt = buf;
length = 1;
break;
case etCHARX:
if (bArgList) {
assert(0);
/*
bufpt = getTextArg(pArgList);
length = 1;
if( bufpt ){
buf[0] = c = *(bufpt++);
if( (c&0xc0)==0xc0 ){
while( length<4 && (bufpt[0]&0xc0)==0x80 ){
buf[length++] = *(bufpt++);
}
}
}else{
buf[0] = 0;
} */
} else {
unsigned int ch = va_arg(ap, unsigned int);
if (ch < 0x00080) {
buf[0] = ch & 0xff;
length = 1;
} else if (ch < 0x00800) {
buf[0] = 0xc0 + (u8)((ch >> 6) & 0x1f);
buf[1] = 0x80 + (u8)(ch & 0x3f);
length = 2;
} else if (ch < 0x10000) {
buf[0] = 0xe0 + (u8)((ch >> 12) & 0x0f);
buf[1] = 0x80 + (u8)((ch >> 6) & 0x3f);
buf[2] = 0x80 + (u8)(ch & 0x3f);
length = 3;
} else {
buf[0] = 0xf0 + (u8)((ch >> 18) & 0x07);
buf[1] = 0x80 + (u8)((ch >> 12) & 0x3f);
buf[2] = 0x80 + (u8)((ch >> 6) & 0x3f);
buf[3] = 0x80 + (u8)(ch & 0x3f);
length = 4;
}
}
if (precision > 1) {
width -= precision - 1;
if (width > 1 && !flag_leftjustify) {
sqlite3AppendChar(pAccum, width - 1, ' ');
width = 0;
}
while (precision-- > 1) {
sqlite3StrAccumAppend(pAccum, buf, length);
}
}
bufpt = buf;
flag_altform2 = 1;
goto adjust_width_for_utf8;
case etSTRING:
case etDYNSTRING:
if (bArgList) {
assert(0);
// bufpt = getTextArg(pArgList);
// xtype = etSTRING;
} else {
bufpt = va_arg(ap, char *);
}
if (bufpt == 0) {
bufpt = "";
} else if (xtype == etDYNSTRING) {
//
// if( pAccum->nChar==0 && pAccum->mxAlloc && width==0 && precision<0 ){
// /* Special optimization for sqlite3_mprintf("%z..."):
// ** Extend an existing memory allocation rather than creating
// ** a new one. */
// assert( (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 );
// pAccum->zText = bufpt;
// pAccum->nAlloc = sqlite3DbMallocSize(pAccum->db, bufpt);
// pAccum->nChar = 0x7fffffff & (int)strlen(bufpt);
// pAccum->printfFlags |= SQLITE_PRINTF_MALLOCED;
// length = 0;
// break;
// }
zExtra = bufpt;
}
if (precision >= 0) {
if (flag_altform2) {
/* Set length to the number of bytes needed in order to display
** precision characters */
unsigned char *z = (unsigned char *)bufpt;
while (precision-- > 0 && z[0]) {
SQLITE_SKIP_UTF8(z);
}
length = (int)(z - (unsigned char *)bufpt);
} else {
for (length = 0; length < precision && bufpt[length]; length++) {
}
}
} else {
length = 0x7fffffff & (int)strlen(bufpt);
}
adjust_width_for_utf8:
if (flag_altform2 && width > 0) {
/* Adjust width to account for extra bytes in UTF-8 characters */
int ii = length - 1;
while (ii >= 0)
if ((bufpt[ii--] & 0xc0) == 0x80)
width++;
}
break;
case etSQLESCAPE: /* %q: Escape ' characters */
case etSQLESCAPE2: /* %Q: Escape ' and enclose in '...' */
case etSQLESCAPE3: { /* %w: Escape " characters */
int i, j, k, n, isnull;
int needQuote;
char ch;
char q = ((xtype == etSQLESCAPE3) ? '"' : '\''); /* Quote character */
char *escarg;
if (bArgList) {
assert(0);
// escarg = getTextArg(pArgList);
} else {
escarg = va_arg(ap, char *);
}
isnull = escarg == 0;
if (isnull)
escarg = (xtype == etSQLESCAPE2 ? "NULL" : "(NULL)");
/* For %q, %Q, and %w, the precision is the number of byte (or
** characters if the ! flags is present) to use from the input.
** Because of the extra quoting characters inserted, the number
** of output characters may be larger than the precision.
*/
k = precision;
for (i = n = 0; k != 0 && (ch = escarg[i]) != 0; i++, k--) {
if (ch == q)
n++;
if (flag_altform2 && (ch & 0xc0) == 0xc0) {
while ((escarg[i + 1] & 0xc0) == 0x80) {
i++;
}
}
}
needQuote = !isnull && xtype == etSQLESCAPE2;
n += i + 3;
if (n > etBUFSIZE) {
bufpt = zExtra = sqlite3Malloc(n);
if (bufpt == 0) {
setStrAccumError(pAccum, STRACCUM_NOMEM);
return;
}
} else {
bufpt = buf;
}
j = 0;
if (needQuote)
bufpt[j++] = q;
k = i;
for (i = 0; i < k; i++) {
bufpt[j++] = ch = escarg[i];
if (ch == q)
bufpt[j++] = ch;
}
if (needQuote)
bufpt[j++] = q;
bufpt[j] = 0;
length = j;
goto adjust_width_for_utf8;
}
case etTOKEN: {
/*
Token *pToken;
if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return;
pToken = va_arg(ap, Token*);
assert( bArgList==0 );
if( pToken && pToken->n ){
sqlite3StrAccumAppend(pAccum, (const char*)pToken->z, pToken->n);
}
length = width = 0;
*/
assert(0);
break;
}
case etSRCLIST: {
/*
SrcList *pSrc;
int k;
struct SrcList_item *pItem;
if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return;
pSrc = va_arg(ap, SrcList*);
k = va_arg(ap, int);
pItem = &pSrc->a[k];
assert( bArgList==0 );
assert( k>=0 && k<pSrc->nSrc );
if( pItem->zDatabase ){
sqlite3StrAccumAppendAll(pAccum, pItem->zDatabase);
sqlite3StrAccumAppend(pAccum, ".", 1);
}
sqlite3StrAccumAppendAll(pAccum, pItem->zName);
length = width = 0;
*/
assert(0);
break;
}
default: {
assert(xtype == etINVALID);
return;
}
} /* End switch over the format type */
/*
** The text of the conversion is pointed to by "bufpt" and is
** "length" characters long. The field width is "width". Do
** the output. Both length and width are in bytes, not characters,
** at this point. If the "!" flag was present on string conversions
** indicating that width and precision should be expressed in characters,
** then the values have been translated prior to reaching this point.
*/
width -= length;
if (width > 0) {
if (!flag_leftjustify)
sqlite3AppendChar(pAccum, width, ' ');
sqlite3StrAccumAppend(pAccum, bufpt, length);
if (flag_leftjustify)
sqlite3AppendChar(pAccum, width, ' ');
} else {
sqlite3StrAccumAppend(pAccum, bufpt, length);
}
if (zExtra) {
free(zExtra);
zExtra = 0;
}
} /* End for loop over the format string */
} /* End of function */
/*
** Enlarge the memory allocation on a StrAccum object so that it is
** able to accept at least N more bytes of text.
**
** Return the number of bytes of text that StrAccum is able to accept
** after the attempted enlargement. The value returned might be zero.
*/
static int sqlite3StrAccumEnlarge(StrAccum *p, int N) {
char *zNew;
assert(p->nChar + (i64)N >= p->nAlloc); /* Only called if really needed */
if (p->accError) {
// testcase(p->accError==STRACCUM_TOOBIG);
// testcase(p->accError==STRACCUM_NOMEM);
return 0;
}
if (p->mxAlloc == 0) {
N = p->nAlloc - p->nChar - 1;
setStrAccumError(p, STRACCUM_TOOBIG);
return N;
} else {
char *zOld = isMalloced(p) ? p->zText : 0;
i64 szNew = p->nChar;
szNew += N + 1;
if (szNew + p->nChar <= p->mxAlloc) {
/* Force exponential buffer size growth as long as it does not overflow,
** to avoid having to call this routine too often */
szNew += p->nChar;
}
if (szNew > p->mxAlloc) {
sqlite3StrAccumReset(p);
setStrAccumError(p, STRACCUM_TOOBIG);
return 0;
} else {
p->nAlloc = (int)szNew;
}
if (p->db) {
assert(0);
// zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc);
} else {
zNew = sqlite3_realloc64(zOld, p->nAlloc);
}
if (zNew) {
assert(p->zText != 0 || p->nChar == 0);
if (!isMalloced(p) && p->nChar > 0)
memcpy(zNew, p->zText, p->nChar);
p->zText = zNew;
// p->nAlloc = sqlite3DbMallocSize(p->db, zNew);
p->printfFlags |= SQLITE_PRINTF_MALLOCED;
} else {
sqlite3StrAccumReset(p);
setStrAccumError(p, STRACCUM_NOMEM);
return 0;
}
}
return N;
}
/*
** Append N copies of character c to the given string buffer.
*/
void sqlite3AppendChar(StrAccum *p, int N, char c) {
// testcase( p->nChar + (i64)N > 0x7fffffff );
if (p->nChar + (i64)N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N)) <= 0) {
return;
}
while ((N--) > 0)
p->zText[p->nChar++] = c;
}
/*
** The StrAccum "p" is not large enough to accept N new bytes of z[].
** So enlarge if first, then do the append.
**
** This is a helper routine to sqlite3StrAccumAppend() that does special-case
** work (enlarging the buffer) using tail recursion, so that the
** sqlite3StrAccumAppend() routine can use fast calling semantics.
*/
static void enlargeAndAppend(StrAccum *p, const char *z, int N) {
N = sqlite3StrAccumEnlarge(p, N);
if (N > 0) {
memcpy(&p->zText[p->nChar], z, N);
p->nChar += N;
}
}
/*
** Append N bytes of text from z to the StrAccum object. Increase the
** size of the memory allocation for StrAccum if necessary.
*/
void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N) {
assert(z != 0 || N == 0);
assert(p->zText != 0 || p->nChar == 0 || p->accError);
assert(N >= 0);
assert(p->accError == 0 || p->nAlloc == 0);
if (p->nChar + N >= p->nAlloc) {
enlargeAndAppend(p, z, N);
} else if (N) {
assert(p->zText);
p->nChar += N;
memcpy(&p->zText[p->nChar - N], z, N);
}
}
/*
** Append the complete text of zero-terminated string z[] to the p string.
*/
void sqlite3StrAccumAppendAll(StrAccum *p, const char *z) {
sqlite3StrAccumAppend(p, z, strlen(z));
}
/*
** Finish off a string by making sure it is zero-terminated.
** Return a pointer to the resulting string. Return a NULL
** pointer if any kind of error was encountered.
*/
static char *strAccumFinishRealloc(StrAccum *p) {
char *zText;
assert(p->mxAlloc > 0 && !isMalloced(p));
zText = malloc(p->nChar + 1);
if (zText) {
memcpy(zText, p->zText, p->nChar + 1);
p->printfFlags |= SQLITE_PRINTF_MALLOCED;
} else {
setStrAccumError(p, STRACCUM_NOMEM);
}
p->zText = zText;
return zText;
}
char *sqlite3StrAccumFinish(StrAccum *p) {
if (p->zText) {
p->zText[p->nChar] = 0;
if (p->mxAlloc > 0 && !isMalloced(p)) {
return strAccumFinishRealloc(p);
}
}
return p->zText;
}
/*
** Reset an StrAccum string. Reclaim all malloced memory.
*/
void sqlite3StrAccumReset(StrAccum *p) {
if (isMalloced(p)) {
// sqlite3DbFree(p->db, p->zText);
free(p->zText);
p->printfFlags &= ~SQLITE_PRINTF_MALLOCED;
}
p->zText = 0;
}
/*
** Initialize a string accumulator.
**
** p: The accumulator to be initialized.
** db: Pointer to a database connection. May be NULL. Lookaside
** memory is used if not NULL. db->mallocFailed is set appropriately
** when not NULL.
** zBase: An initial buffer. May be NULL in which case the initial buffer
** is malloced.
** n: Size of zBase in bytes. If total space requirements never exceed
** n then no memory allocations ever occur.
** mx: Maximum number of bytes to accumulate. If mx==0 then no memory
** allocations will ever occur.
*/
void sqlite3StrAccumInit(StrAccum *p, void *db, char *zBase, int n, int mx) {
p->zText = zBase;
assert(!db);
p->db = db;
p->nAlloc = n;
p->mxAlloc = mx;
p->nChar = 0;
p->accError = 0;
p->printfFlags = 0;
}
/*
** Print into memory obtained from sqlite3_malloc(). Omit the internal
** %-conversion extensions.
*/
char *sqlite3_vmprintf(const char *zFormat, va_list ap) {
char *z;
char zBase[SQLITE_PRINT_BUF_SIZE];
StrAccum acc;
sqlite3StrAccumInit(&acc, 0, zBase, sizeof(zBase), SQLITE_MAX_LENGTH);
sqlite3VXPrintf(&acc, zFormat, ap);
z = sqlite3StrAccumFinish(&acc);
return z;
}
/*
** Print into memory obtained from sqlite3_malloc()(). Omit the internal
** %-conversion extensions.
*/
char *sqlite3_mprintf(const char *zFormat, ...) {
va_list ap;
char *z;
va_start(ap, zFormat);
z = sqlite3_vmprintf(zFormat, ap);
va_end(ap);
return z;
}
/*
** sqlite3_snprintf() works like snprintf() except that it ignores the
** current locale settings. This is important for SQLite because we
** are not able to use a "," as the decimal point in place of "." as
** specified by some locales.
**
** Oops: The first two arguments of sqlite3_snprintf() are backwards
** from the snprintf() standard. Unfortunately, it is too late to change
** this without breaking compatibility, so we just have to live with the
** mistake.
**
** sqlite3_vsnprintf() is the varargs version.
*/
char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap) {
StrAccum acc;
if (n <= 0)
return zBuf;
#ifdef SQLITE_ENABLE_API_ARMOR
if (zBuf == 0 || zFormat == 0) {
(void)SQLITE_MISUSE_BKPT;
if (zBuf)
zBuf[0] = 0;
return zBuf;
}
#endif
sqlite3StrAccumInit(&acc, 0, zBuf, n, 0);
sqlite3VXPrintf(&acc, zFormat, ap);
zBuf[acc.nChar] = 0;
return zBuf;
}
char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...) {
char *z;
va_list ap;
va_start(ap, zFormat);
z = sqlite3_vsnprintf(n, zBuf, zFormat, ap);
va_end(ap);
return z;
}