Files
email-tracker/external/duckdb/scripts/regression_test_python.py
2025-10-24 19:21:19 -05:00

403 lines
13 KiB
Python

import os
import sys
import duckdb
import pandas as pd
import pyarrow as pa
import time
import argparse
from typing import Dict, List, Any
import numpy as np
TPCH_QUERIES = []
res = duckdb.execute(
"""
select query from tpch_queries()
"""
).fetchall()
for x in res:
TPCH_QUERIES.append(x[0])
parser = argparse.ArgumentParser()
parser.add_argument("--verbose", action="store_true", help="Enable verbose mode", default=False)
parser.add_argument("--threads", type=int, help="Number of threads", default=None)
parser.add_argument("--nruns", type=int, help="Number of runs", default=10)
parser.add_argument("--out-file", type=str, help="Output file path", default=None)
parser.add_argument("--scale-factor", type=float, help="Set the scale factor TPCH is generated at", default=1.0)
args, unknown_args = parser.parse_known_args()
verbose = args.verbose
threads = args.threads
nruns = args.nruns
out_file = args.out_file
scale_factor = args.scale_factor
if unknown_args:
parser.error(f"Unrecognized parameter(s): {', '.join(unknown_args)}")
def print_msg(message: str):
if not verbose:
return
print(message)
def write_result(benchmark_name, nrun, t):
bench_result = f"{benchmark_name}\t{nrun}\t{t}"
if out_file is not None:
if not hasattr(write_result, 'file'):
write_result.file = open(out_file, 'w+')
write_result.file.write(bench_result)
write_result.file.write('\n')
else:
print_msg(bench_result)
def close_result():
if not hasattr(write_result, 'file'):
return
write_result.file.close()
class BenchmarkResult:
def __init__(self, name):
self.name = name
self.runs: List[float] = []
def add(self, duration: float):
self.runs.append(duration)
def write(self):
for i, run in enumerate(self.runs):
write_result(self.name, i, run)
class TPCHData:
TABLES = ["customer", "lineitem", "nation", "orders", "part", "partsupp", "region", "supplier"]
def __init__(self, scale_factor):
self.conn = duckdb.connect()
self.conn.execute(f'CALL dbgen(sf={scale_factor})')
def get_tables(self, convertor) -> Dict[str, Any]:
res = {}
for table in self.TABLES:
res[table] = convertor(self.conn, table)
return res
def load_lineitem(self, collector, benchmark_name) -> BenchmarkResult:
query = 'SELECT * FROM lineitem'
result = BenchmarkResult(benchmark_name)
for _ in range(nruns):
duration = 0.0
start = time.time()
rel = self.conn.sql(query)
res = collector(rel)
end = time.time()
duration = float(end - start)
del res
padding = " " * len(str(nruns))
print_msg(f"T{padding}: {duration}s")
result.add(duration)
return result
class TPCHBenchmarker:
def __init__(self, name: str):
self.initialize_connection()
self.name = name
def initialize_connection(self):
self.con = duckdb.connect()
if not threads:
return
print_msg(f'Limiting threads to {threads}')
self.con.execute(f"SET threads={threads}")
def register_tables(self, tables: Dict[str, Any]):
for name, table in tables.items():
self.con.register(name, table)
def run_tpch(self, collector, benchmark_name) -> BenchmarkResult:
print_msg("")
print_msg(TPCH_QUERIES)
result = BenchmarkResult(benchmark_name)
for _ in range(nruns):
duration = 0.0
# Execute all queries
for i, query in enumerate(TPCH_QUERIES):
start = time.time()
rel = self.con.sql(query)
if rel:
res = collector(rel)
del res
else:
print_msg(f"Query '{query}' did not produce output")
end = time.time()
query_time = float(end - start)
print_msg(f"Q{str(i).ljust(len(str(nruns)), ' ')}: {query_time}")
duration += float(end - start)
padding = " " * len(str(nruns))
print_msg(f"T{padding}: {duration}s")
result.add(duration)
return result
def test_tpch():
print_msg(f"Generating TPCH (sf={scale_factor})")
tpch = TPCHData(scale_factor)
## -------- Benchmark converting LineItem to different formats ---------
def fetch_native(rel: duckdb.DuckDBPyRelation):
return rel.fetchall()
def fetch_pandas(rel: duckdb.DuckDBPyRelation):
return rel.df()
def fetch_arrow(rel: duckdb.DuckDBPyRelation):
return rel.arrow()
COLLECTORS = {'native': fetch_native, 'pandas': fetch_pandas, 'arrow': fetch_arrow}
# For every collector, load lineitem 'nrun' times
for collector in COLLECTORS:
result: BenchmarkResult = tpch.load_lineitem(COLLECTORS[collector], collector + "_load_lineitem")
print_msg(result.name)
print_msg(collector)
result.write()
## ------- Benchmark running TPCH queries on top of different formats --------
def convert_pandas(conn: duckdb.DuckDBPyConnection, table_name: str):
return conn.execute(f"SELECT * FROM {table_name}").df()
def convert_arrow(conn: duckdb.DuckDBPyConnection, table_name: str):
df = convert_pandas(conn, table_name)
return pa.Table.from_pandas(df)
CONVERTORS = {'pandas': convert_pandas, 'arrow': convert_arrow}
# Convert TPCH data to the right format, then run TPCH queries on that data
for convertor in CONVERTORS:
tables = tpch.get_tables(CONVERTORS[convertor])
tester = TPCHBenchmarker(convertor)
tester.register_tables(tables)
collector = COLLECTORS[convertor]
result: BenchmarkResult = tester.run_tpch(collector, f"{convertor}tpch")
result.write()
def generate_string(seed: int):
output = ''
for _ in range(10):
output += chr(ord('A') + int(seed % 26))
seed /= 26
return output
class ArrowDictionary:
def __init__(self, unique_values):
self.size = unique_values
self.dict = [generate_string(x) for x in range(unique_values)]
class ArrowDictionaryBenchmark:
def __init__(self, unique_values, values, arrow_dict: ArrowDictionary):
assert unique_values <= arrow_dict.size
self.initialize_connection()
self.generate(unique_values, values, arrow_dict)
def initialize_connection(self):
self.con = duckdb.connect()
if not threads:
return
print_msg(f'Limiting threads to {threads}')
self.con.execute(f"SET threads={threads}")
def generate(self, unique_values, values, arrow_dict: ArrowDictionary):
self.input = []
self.expected = []
for x in range(values):
value = arrow_dict.dict[x % unique_values]
self.input.append(value)
self.expected.append((value,))
array = pa.array(
self.input,
type=pa.dictionary(pa.int64(), pa.string()),
)
self.table = pa.table([array], names=["x"])
def benchmark(self, benchmark_name) -> BenchmarkResult:
self.con.register('arrow_table', self.table)
result = BenchmarkResult(benchmark_name)
for _ in range(nruns):
duration = 0.0
start = time.time()
res = self.con.execute(
"""
select * from arrow_table
"""
).fetchall()
end = time.time()
duration = float(end - start)
assert self.expected == res
del res
padding = " " * len(str(nruns))
print_msg(f"T{padding}: {duration}s")
result.add(duration)
return result
class SelectAndCallBenchmark:
def __init__(self):
"""
SELECT statements become QueryRelations, any other statement type becomes a MaterializedRelation.
We use SELECT and CALL here because their execution plans are identical
"""
self.initialize_connection()
def initialize_connection(self):
self.con = duckdb.connect()
if not threads:
return
print_msg(f'Limiting threads to {threads}')
self.con.execute(f"SET threads={threads}")
def benchmark(self, name, query) -> List[BenchmarkResult]:
results: List[BenchmarkResult] = []
methods = {'select': 'select * from ', 'call': 'call '}
for key, value in methods.items():
for rowcount in [2048, 50000, 2500000]:
result = BenchmarkResult(f'{key}_{name}_{rowcount}')
query_string = query.format(rows=rowcount)
query_string = value + query_string
rel = self.con.sql(query_string)
print_msg(rel.type)
for _ in range(nruns):
duration = 0.0
start = time.time()
rel.fetchall()
end = time.time()
duration = float(end - start)
padding = " " * len(str(nruns))
print_msg(f"T{padding}: {duration}s")
result.add(duration)
results.append(result)
return results
class PandasDFLoadBenchmark:
def __init__(self):
self.initialize_connection()
self.generate()
def initialize_connection(self):
self.con = duckdb.connect()
if not threads:
return
print_msg(f'Limiting threads to {threads}')
self.con.execute(f"SET threads={threads}")
def generate(self):
self.con.execute("call dbgen(sf=0.1)")
new_table = "*, " + ", ".join(["l_shipdate"] * 300)
self.con.execute(f"create table wide as select {new_table} from lineitem limit 500")
self.con.execute(f"copy wide to 'wide_table.csv' (FORMAT CSV)")
def benchmark(self, benchmark_name) -> BenchmarkResult:
result = BenchmarkResult(benchmark_name)
for _ in range(nruns):
duration = 0.0
pandas_df = pd.read_csv('wide_table.csv')
start = time.time()
for _ in range(30):
res = self.con.execute("""select * from pandas_df""").df()
end = time.time()
duration = float(end - start)
del res
result.add(duration)
return result
class PandasAnalyzerBenchmark:
def __init__(self):
self.initialize_connection()
self.generate()
def initialize_connection(self):
self.con = duckdb.connect()
if not threads:
return
print_msg(f'Limiting threads to {threads}')
self.con.execute(f"SET threads={threads}")
def generate(self):
return
def benchmark(self, benchmark_name) -> BenchmarkResult:
result = BenchmarkResult(benchmark_name)
data = [None] * 9999999 + [1] # Last element is 1, others are None
# Create the DataFrame with the specified data and column type as object
pandas_df = pd.DataFrame(data, columns=['Column'], dtype=object)
for _ in range(nruns):
duration = 0.0
start = time.time()
for _ in range(30):
res = self.con.execute("""select * from pandas_df""").df()
end = time.time()
duration = float(end - start)
del res
result.add(duration)
return result
def test_arrow_dictionaries_scan():
DICT_SIZE = 26 * 1000
print_msg(f"Generating a unique dictionary of size {DICT_SIZE}")
arrow_dict = ArrowDictionary(DICT_SIZE)
DATASET_SIZE = 10000000
for unique_values in [2, 1000, DICT_SIZE]:
test = ArrowDictionaryBenchmark(unique_values, DATASET_SIZE, arrow_dict)
benchmark_name = f"arrow_dict_unique_{unique_values}_total_{DATASET_SIZE}"
result = test.benchmark(benchmark_name)
result.write()
def test_loading_pandas_df_many_times():
test = PandasDFLoadBenchmark()
benchmark_name = f"load_pandas_df_many_times"
result = test.benchmark(benchmark_name)
result.write()
def test_pandas_analyze():
test = PandasAnalyzerBenchmark()
benchmark_name = f"pandas_analyze"
result = test.benchmark(benchmark_name)
result.write()
def test_call_and_select_statements():
test = SelectAndCallBenchmark()
queries = {
'repeat_row': "repeat_row(42, 'test', True, 'this is a long string', num_rows={rows})",
}
for key, value in queries.items():
results = test.benchmark(key, value)
for res in results:
res.write()
def main():
test_tpch()
test_arrow_dictionaries_scan()
test_loading_pandas_df_many_times()
test_pandas_analyze()
test_call_and_select_statements()
close_result()
if __name__ == '__main__':
main()