should be it
This commit is contained in:
432
external/duckdb/third_party/concurrentqueue/lightweightsemaphore.h
vendored
Normal file
432
external/duckdb/third_party/concurrentqueue/lightweightsemaphore.h
vendored
Normal file
@@ -0,0 +1,432 @@
|
||||
// Provides an efficient implementation of a semaphore (LightweightSemaphore).
|
||||
// This is an extension of Jeff Preshing's sempahore implementation (licensed
|
||||
// under the terms of its separate zlib license) that has been adapted and
|
||||
// extended by Cameron Desrochers.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstddef> // For std::size_t
|
||||
#include <atomic>
|
||||
#include <type_traits> // For std::make_signed<T>
|
||||
|
||||
#if defined(_WIN32)
|
||||
// Avoid including windows.h in a header; we only need a handful of
|
||||
// items, so we'll redeclare them here (this is relatively safe since
|
||||
// the API generally has to remain stable between Windows versions).
|
||||
// I know this is an ugly hack but it still beats polluting the global
|
||||
// namespace with thousands of generic names or adding a .cpp for nothing.
|
||||
extern "C" {
|
||||
struct _SECURITY_ATTRIBUTES;
|
||||
__declspec(dllimport) void* __stdcall CreateSemaphoreW(_SECURITY_ATTRIBUTES* lpSemaphoreAttributes, long lInitialCount, long lMaximumCount, const wchar_t* lpName);
|
||||
__declspec(dllimport) int __stdcall CloseHandle(void* hObject);
|
||||
__declspec(dllimport) unsigned long __stdcall WaitForSingleObject(void* hHandle, unsigned long dwMilliseconds);
|
||||
__declspec(dllimport) int __stdcall ReleaseSemaphore(void* hSemaphore, long lReleaseCount, long* lpPreviousCount);
|
||||
}
|
||||
#elif defined(__MACH__)
|
||||
#include <mach/mach.h>
|
||||
#elif defined(__unix__)
|
||||
#include <semaphore.h>
|
||||
#include <chrono>
|
||||
#elif defined(__MVS__)
|
||||
#include <zos-semaphore.h>
|
||||
#include <chrono>
|
||||
#endif
|
||||
|
||||
namespace duckdb_moodycamel
|
||||
{
|
||||
namespace details
|
||||
{
|
||||
|
||||
// Code in the mpmc_sema namespace below is an adaptation of Jeff Preshing's
|
||||
// portable + lightweight semaphore implementations, originally from
|
||||
// https://github.com/preshing/cpp11-on-multicore/blob/master/common/sema.h
|
||||
// LICENSE:
|
||||
// Copyright (c) 2015 Jeff Preshing
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
//
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
//
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgement in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
#if defined(_WIN32)
|
||||
class Semaphore
|
||||
{
|
||||
private:
|
||||
void* m_hSema;
|
||||
|
||||
Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||
Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||
|
||||
public:
|
||||
Semaphore(int initialCount = 0)
|
||||
{
|
||||
assert(initialCount >= 0);
|
||||
const long maxLong = 0x7fffffff;
|
||||
m_hSema = CreateSemaphoreW(nullptr, initialCount, maxLong, nullptr);
|
||||
assert(m_hSema);
|
||||
}
|
||||
|
||||
~Semaphore()
|
||||
{
|
||||
CloseHandle(m_hSema);
|
||||
}
|
||||
|
||||
bool wait()
|
||||
{
|
||||
const unsigned long infinite = 0xffffffff;
|
||||
return WaitForSingleObject(m_hSema, infinite) == 0;
|
||||
}
|
||||
|
||||
bool try_wait()
|
||||
{
|
||||
return WaitForSingleObject(m_hSema, 0) == 0;
|
||||
}
|
||||
|
||||
bool timed_wait(std::uint64_t usecs)
|
||||
{
|
||||
return WaitForSingleObject(m_hSema, (unsigned long)(usecs / 1000)) == 0;
|
||||
}
|
||||
|
||||
void signal(int count = 1)
|
||||
{
|
||||
while (!ReleaseSemaphore(m_hSema, count, nullptr));
|
||||
}
|
||||
};
|
||||
#elif defined(__MACH__)
|
||||
//---------------------------------------------------------
|
||||
// Semaphore (Apple iOS and OSX)
|
||||
// Can't use POSIX semaphores due to http://lists.apple.com/archives/darwin-kernel/2009/Apr/msg00010.html
|
||||
//---------------------------------------------------------
|
||||
class Semaphore
|
||||
{
|
||||
private:
|
||||
semaphore_t m_sema;
|
||||
|
||||
Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||
Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||
|
||||
public:
|
||||
Semaphore(int initialCount = 0)
|
||||
{
|
||||
assert(initialCount >= 0);
|
||||
kern_return_t rc = semaphore_create(mach_task_self(), &m_sema, SYNC_POLICY_FIFO, initialCount);
|
||||
assert(rc == KERN_SUCCESS);
|
||||
(void)rc;
|
||||
}
|
||||
|
||||
~Semaphore()
|
||||
{
|
||||
semaphore_destroy(mach_task_self(), m_sema);
|
||||
}
|
||||
|
||||
bool wait()
|
||||
{
|
||||
return semaphore_wait(m_sema) == KERN_SUCCESS;
|
||||
}
|
||||
|
||||
bool try_wait()
|
||||
{
|
||||
return timed_wait(0);
|
||||
}
|
||||
|
||||
bool timed_wait(std::uint64_t timeout_usecs)
|
||||
{
|
||||
mach_timespec_t ts;
|
||||
ts.tv_sec = static_cast<unsigned int>(timeout_usecs / 1000000);
|
||||
ts.tv_nsec = (timeout_usecs % 1000000) * 1000;
|
||||
|
||||
// added in OSX 10.10: https://developer.apple.com/library/prerelease/mac/documentation/General/Reference/APIDiffsMacOSX10_10SeedDiff/modules/Darwin.html
|
||||
kern_return_t rc = semaphore_timedwait(m_sema, ts);
|
||||
return rc == KERN_SUCCESS;
|
||||
}
|
||||
|
||||
void signal()
|
||||
{
|
||||
while (semaphore_signal(m_sema) != KERN_SUCCESS);
|
||||
}
|
||||
|
||||
void signal(int count)
|
||||
{
|
||||
while (count-- > 0)
|
||||
{
|
||||
while (semaphore_signal(m_sema) != KERN_SUCCESS);
|
||||
}
|
||||
}
|
||||
};
|
||||
#elif defined(__unix__) || defined(__MVS__)
|
||||
//---------------------------------------------------------
|
||||
// Semaphore (POSIX, Linux, zOS aka MVS)
|
||||
//---------------------------------------------------------
|
||||
class Semaphore
|
||||
{
|
||||
private:
|
||||
sem_t m_sema;
|
||||
|
||||
Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||
Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||
|
||||
public:
|
||||
Semaphore(int initialCount = 0)
|
||||
{
|
||||
assert(initialCount >= 0);
|
||||
int rc = sem_init(&m_sema, 0, initialCount);
|
||||
assert(rc == 0);
|
||||
(void)rc;
|
||||
}
|
||||
|
||||
~Semaphore()
|
||||
{
|
||||
sem_destroy(&m_sema);
|
||||
}
|
||||
|
||||
bool wait()
|
||||
{
|
||||
// http://stackoverflow.com/questions/2013181/gdb-causes-sem-wait-to-fail-with-eintr-error
|
||||
int rc;
|
||||
do {
|
||||
rc = sem_wait(&m_sema);
|
||||
} while (rc == -1 && errno == EINTR);
|
||||
return rc == 0;
|
||||
}
|
||||
|
||||
bool try_wait()
|
||||
{
|
||||
int rc;
|
||||
do {
|
||||
rc = sem_trywait(&m_sema);
|
||||
} while (rc == -1 && errno == EINTR);
|
||||
return rc == 0;
|
||||
}
|
||||
|
||||
bool timed_wait(std::uint64_t usecs)
|
||||
{
|
||||
struct timespec ts;
|
||||
const int usecs_in_1_sec = 1000000;
|
||||
const int nsecs_in_1_sec = 1000000000;
|
||||
|
||||
// sem_timedwait needs an absolute time
|
||||
// hence we need to first obtain the current time
|
||||
// and then add the maximum time we want to wait
|
||||
// we want to avoid clock_gettime because of linking issues
|
||||
// chrono -> timespec conversion from here: https://embeddedartistry.com/blog/2019/01/31/converting-between-timespec-stdchrono/
|
||||
auto current_time = std::chrono::system_clock::now();
|
||||
auto secs = std::chrono::time_point_cast<std::chrono::seconds>(current_time);
|
||||
auto ns = std::chrono::time_point_cast<std::chrono::nanoseconds>(current_time) - std::chrono::time_point_cast<std::chrono::nanoseconds>(secs);
|
||||
|
||||
ts.tv_sec = secs.time_since_epoch().count();
|
||||
ts.tv_nsec = ns.count();
|
||||
|
||||
// now add the time we want to wait
|
||||
ts.tv_sec += usecs / usecs_in_1_sec;
|
||||
ts.tv_nsec += (usecs % usecs_in_1_sec) * 1000;
|
||||
|
||||
// sem_timedwait bombs if you have more than 1e9 in tv_nsec
|
||||
// so we have to clean things up before passing it in
|
||||
if (ts.tv_nsec >= nsecs_in_1_sec) {
|
||||
ts.tv_nsec -= nsecs_in_1_sec;
|
||||
++ts.tv_sec;
|
||||
}
|
||||
|
||||
int rc;
|
||||
do {
|
||||
rc = sem_timedwait(&m_sema, &ts);
|
||||
} while (rc == -1 && errno == EINTR);
|
||||
return rc == 0;
|
||||
}
|
||||
|
||||
void signal()
|
||||
{
|
||||
while (sem_post(&m_sema) == -1);
|
||||
}
|
||||
|
||||
void signal(int count)
|
||||
{
|
||||
while (count-- > 0)
|
||||
{
|
||||
while (sem_post(&m_sema) == -1);
|
||||
}
|
||||
}
|
||||
};
|
||||
#else
|
||||
#error Unsupported platform! (No semaphore wrapper available)
|
||||
#endif
|
||||
|
||||
} // end namespace details
|
||||
|
||||
|
||||
//---------------------------------------------------------
|
||||
// LightweightSemaphore
|
||||
//---------------------------------------------------------
|
||||
class LightweightSemaphore
|
||||
{
|
||||
public:
|
||||
typedef std::make_signed<std::size_t>::type ssize_t;
|
||||
|
||||
private:
|
||||
std::atomic<ssize_t> m_count;
|
||||
details::Semaphore m_sema;
|
||||
|
||||
bool waitWithPartialSpinning(std::int64_t timeout_usecs = -1)
|
||||
{
|
||||
ssize_t oldCount;
|
||||
// Is there a better way to set the initial spin count?
|
||||
// If we lower it to 1000, testBenaphore becomes 15x slower on my Core i7-5930K Windows PC,
|
||||
// as threads start hitting the kernel semaphore.
|
||||
int spin = 10000;
|
||||
while (--spin >= 0)
|
||||
{
|
||||
oldCount = m_count.load(std::memory_order_relaxed);
|
||||
if ((oldCount > 0) && m_count.compare_exchange_strong(oldCount, oldCount - 1, std::memory_order_acquire, std::memory_order_relaxed))
|
||||
return true;
|
||||
std::atomic_signal_fence(std::memory_order_acquire); // Prevent the compiler from collapsing the loop.
|
||||
}
|
||||
oldCount = m_count.fetch_sub(1, std::memory_order_acquire);
|
||||
if (oldCount > 0)
|
||||
return true;
|
||||
if (timeout_usecs < 0)
|
||||
return m_sema.wait();
|
||||
if (m_sema.timed_wait((std::uint64_t)timeout_usecs))
|
||||
return true;
|
||||
// At this point, we've timed out waiting for the semaphore, but the
|
||||
// count is still decremented indicating we may still be waiting on
|
||||
// it. So we have to re-adjust the count, but only if the semaphore
|
||||
// wasn't signaled enough times for us too since then. If it was, we
|
||||
// need to release the semaphore too.
|
||||
while (true)
|
||||
{
|
||||
oldCount = m_count.load(std::memory_order_acquire);
|
||||
if (oldCount >= 0 && m_sema.try_wait())
|
||||
return true;
|
||||
if (oldCount < 0 && m_count.compare_exchange_strong(oldCount, oldCount + 1, std::memory_order_relaxed, std::memory_order_relaxed))
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
ssize_t waitManyWithPartialSpinning(ssize_t max, std::int64_t timeout_usecs = -1)
|
||||
{
|
||||
assert(max > 0);
|
||||
ssize_t oldCount;
|
||||
int spin = 10000;
|
||||
while (--spin >= 0)
|
||||
{
|
||||
oldCount = m_count.load(std::memory_order_relaxed);
|
||||
if (oldCount > 0)
|
||||
{
|
||||
ssize_t newCount = oldCount > max ? oldCount - max : 0;
|
||||
if (m_count.compare_exchange_strong(oldCount, newCount, std::memory_order_acquire, std::memory_order_relaxed))
|
||||
return oldCount - newCount;
|
||||
}
|
||||
std::atomic_signal_fence(std::memory_order_acquire);
|
||||
}
|
||||
oldCount = m_count.fetch_sub(1, std::memory_order_acquire);
|
||||
if (oldCount <= 0)
|
||||
{
|
||||
if (timeout_usecs < 0)
|
||||
{
|
||||
if (!m_sema.wait())
|
||||
return 0;
|
||||
}
|
||||
else if (!m_sema.timed_wait((std::uint64_t)timeout_usecs))
|
||||
{
|
||||
while (true)
|
||||
{
|
||||
oldCount = m_count.load(std::memory_order_acquire);
|
||||
if (oldCount >= 0 && m_sema.try_wait())
|
||||
break;
|
||||
if (oldCount < 0 && m_count.compare_exchange_strong(oldCount, oldCount + 1, std::memory_order_relaxed, std::memory_order_relaxed))
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (max > 1)
|
||||
return 1 + tryWaitMany(max - 1);
|
||||
return 1;
|
||||
}
|
||||
|
||||
public:
|
||||
LightweightSemaphore(ssize_t initialCount = 0) : m_count(initialCount)
|
||||
{
|
||||
assert(initialCount >= 0);
|
||||
}
|
||||
|
||||
bool tryWait()
|
||||
{
|
||||
ssize_t oldCount = m_count.load(std::memory_order_relaxed);
|
||||
while (oldCount > 0)
|
||||
{
|
||||
if (m_count.compare_exchange_weak(oldCount, oldCount - 1, std::memory_order_acquire, std::memory_order_relaxed))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool wait()
|
||||
{
|
||||
return tryWait() || waitWithPartialSpinning();
|
||||
}
|
||||
|
||||
bool wait(std::int64_t timeout_usecs)
|
||||
{
|
||||
return tryWait() || waitWithPartialSpinning(timeout_usecs);
|
||||
}
|
||||
|
||||
// Acquires between 0 and (greedily) max, inclusive
|
||||
ssize_t tryWaitMany(ssize_t max)
|
||||
{
|
||||
assert(max >= 0);
|
||||
ssize_t oldCount = m_count.load(std::memory_order_relaxed);
|
||||
while (oldCount > 0)
|
||||
{
|
||||
ssize_t newCount = oldCount > max ? oldCount - max : 0;
|
||||
if (m_count.compare_exchange_weak(oldCount, newCount, std::memory_order_acquire, std::memory_order_relaxed))
|
||||
return oldCount - newCount;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Acquires at least one, and (greedily) at most max
|
||||
ssize_t waitMany(ssize_t max, std::int64_t timeout_usecs)
|
||||
{
|
||||
assert(max >= 0);
|
||||
ssize_t result = tryWaitMany(max);
|
||||
if (result == 0 && max > 0)
|
||||
result = waitManyWithPartialSpinning(max, timeout_usecs);
|
||||
return result;
|
||||
}
|
||||
|
||||
ssize_t waitMany(ssize_t max)
|
||||
{
|
||||
ssize_t result = waitMany(max, -1);
|
||||
assert(result > 0);
|
||||
return result;
|
||||
}
|
||||
|
||||
void signal(ssize_t count = 1)
|
||||
{
|
||||
assert(count >= 0);
|
||||
ssize_t oldCount = m_count.fetch_add(count, std::memory_order_release);
|
||||
ssize_t toRelease = -oldCount < count ? -oldCount : count;
|
||||
if (toRelease > 0)
|
||||
{
|
||||
m_sema.signal((int)toRelease);
|
||||
}
|
||||
}
|
||||
|
||||
ssize_t availableApprox() const
|
||||
{
|
||||
ssize_t count = m_count.load(std::memory_order_relaxed);
|
||||
return count > 0 ? count : 0;
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace duckdb_moodycamel
|
||||
Reference in New Issue
Block a user